NIV, casco, maschera e alti flussi: come scegliere

G. Foti

Dipartimento Emergenza Urgenza
UOC Anestesia e Rianimazione
Università Milano Bicocca
ASST Monza e Brianza

Conflict of Interest

- **Dimar**
- Carefusion, Drager, ThermoFisher, GE

Pts. Population

- **COPD**
- **ACPE**
- **ARDS**

Modality & Interfaces

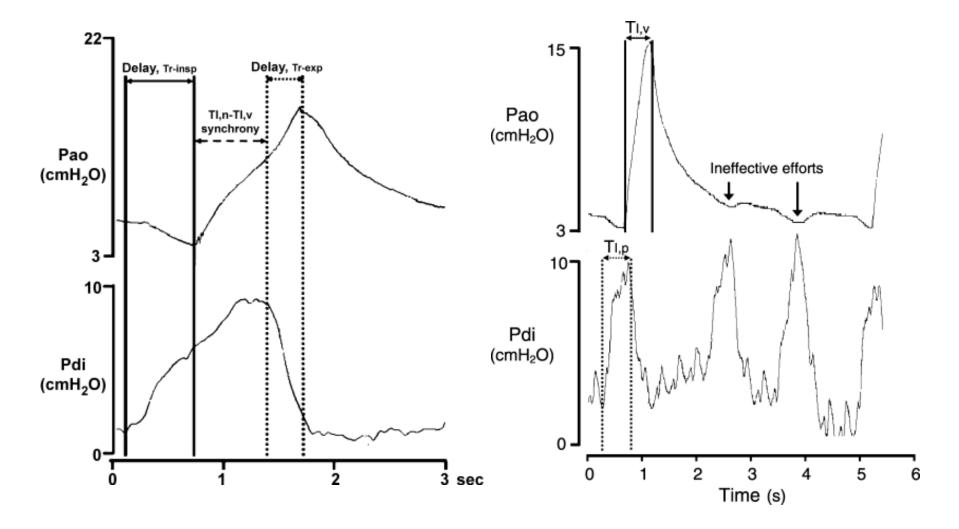
- > PEEP +PSV (NIV)
 - Face mask
 - Helmet
- > CPAP
 - Face Mask
 - Helmet
- **► High Flow Nasal Cannula (HFNC)**

Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure

Clinical indication#	Certainty of evidence 1	Recommendation	
Prevention of hypercapnia in COPD exacerbation	$\oplus \oplus$	Conditional recommendation against	
Hypercapnia with COPD exacerbation	$\oplus \oplus \oplus \oplus$	Strong recommendation for	
Cardiogenic pulmonary oedema	$\oplus \oplus \oplus$	Strong recommendation for	
Acute asthma exacerbation		No recommendation made	
Immunocompromised	$\oplus \oplus \oplus$	Conditional recommendation for	
De novo respiratory failure		No recommendation made	
Post-operative patients	$\oplus \oplus \oplus$	Conditional recommendation for	
Palliative care	$\oplus \oplus \oplus$	Conditional recommendation for	
Trauma	$\oplus \oplus \oplus$	Conditional recommendation for	
Pandemic viral illness		No recommendation made	
Post-extubation in high-risk patients (prophylaxis)	$\oplus \oplus$	Conditional recommendation for	
Post-extubation respiratory failure	$\oplus \oplus$	Conditional recommendation against	
Weaning in hypercapnic patients	$\oplus \oplus \oplus$	Conditional recommendation for	

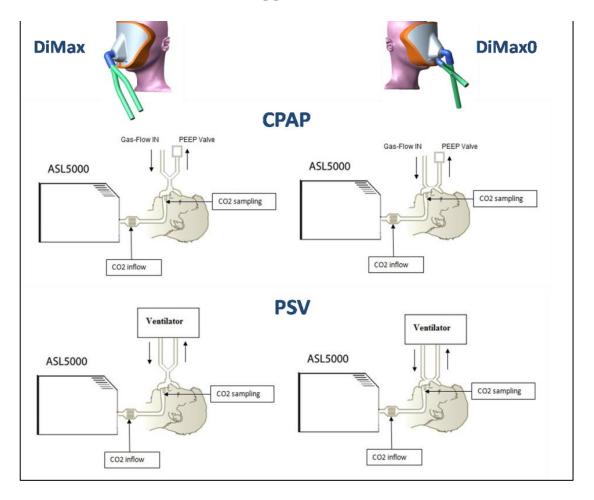
^{#:} all in the setting of acute respiratory failure; 1: certainty of effect estimates: $\oplus \oplus \oplus \oplus$, high; $\oplus \oplus \oplus$, moderate; $\oplus \oplus$, low; \oplus , very low.

I° scelta COPD: Mask PSV +PEEP

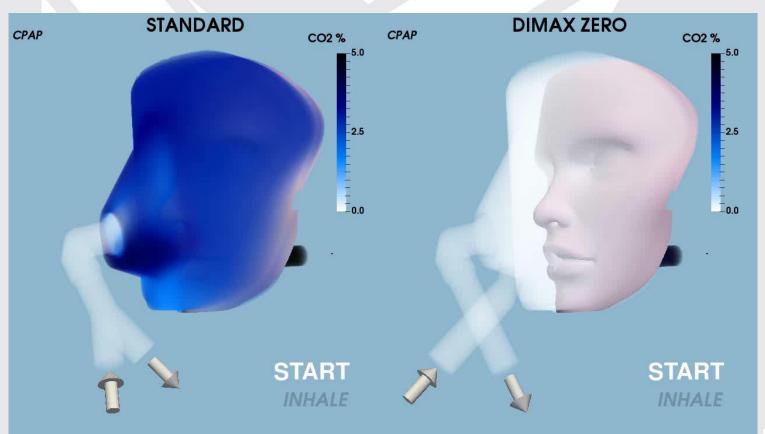

- Questa è la tecnica che ha salvato le vite dei BPCO riacutizzati
- ..esistono altre possibilità ?

Non-invasive ventilation in chronic obstructive pulmonary disease patients: helmet versus facial mask

Paolo Navalesi¹ - , Roberta Costa², Piero Ceriana¹, Annalisa Carlucci¹, George Prinianakis³, Massimo Antonelli², Giorgio Conti² and Stefano Nava¹

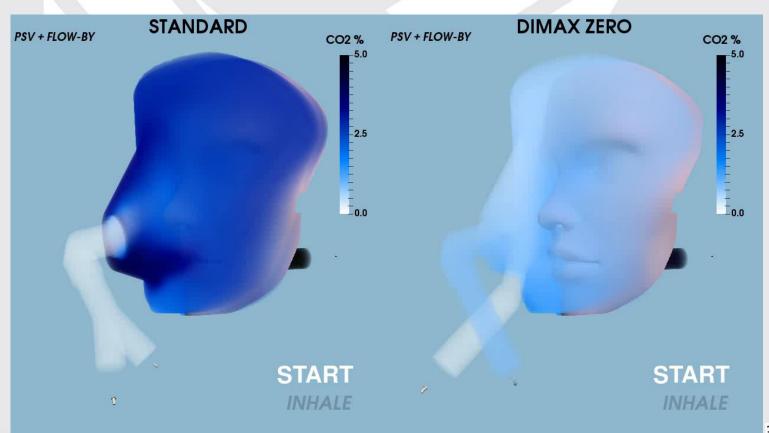

Navalesi P Intensive Care Med. 2007 Jan;33(1):74-81

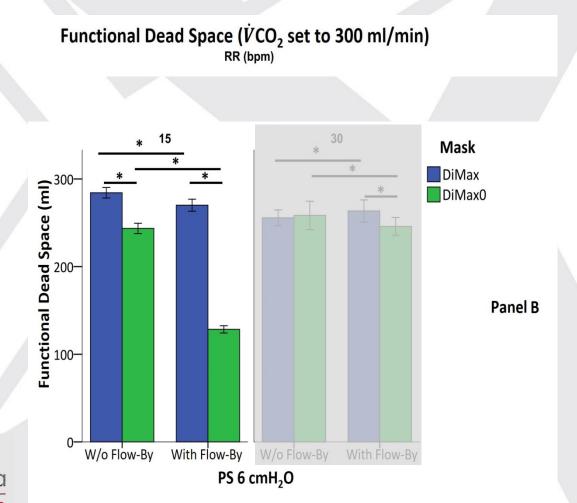
Francesco Mojoli Giorgio A. Iotti Ilaria Currò Marco Pozzi Gabriele Via Aaron Venti Antonio Braschi An optimized set-up for helmet noninvasive ventilation improves pressure support delivery and patient-ventilator interaction


	Conventional set-up	Optimized set-up	p
Pressurization rate (%) Depressurization rate (%) Total helmet MV (l/min) Leaks (%)	30.8 ± 6.9 34.2 ± 4.6 24.6 ± 6.9 5.4 ± 4.1	51.0 ± 3.5 48.2 ± 3.3 27.7 ± 7.0 2.6 ± 1.3	<0.002 <0.0001 <0.02 ns
Inspiratory delay (ms) Unassisted efforts (%) Autotriggering (%)	461 ± 181 20.3 ± 12.4 4.1 ± 5.4	243 ± 109 3.5 ± 5.4 2.2 ± 2.7	<0.005 <0.0001 ns

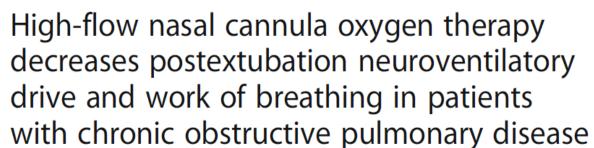
Effect of Face Mask Design and Flow-by on Rebreathing During Noninvasive Ventilation

Davide Signori, Giacomo Bellani, Serena Calcinati, Alice Grassi, Nicolò Patroniti, and Giuseppe Foti


Effect of Face Mask design on CO2 rebreathing during CPAP


Effect of Face Mask design on CO2 rebreathing during mask PSV + Flow by

Effect of Face Mask design and bias flow on CO2 rebreathing during mask PSV

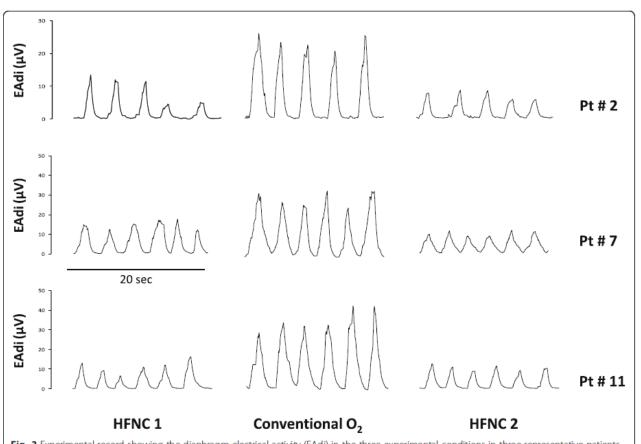
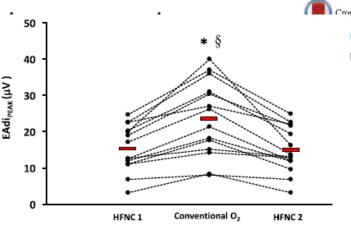


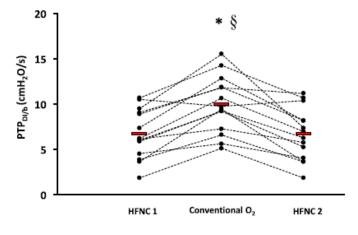
Nasal High-Flow oxygen therapy (Optiflow™)

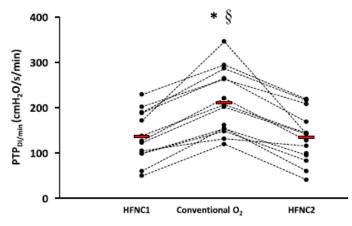
CrossMark

Di mussi et al. Critical Care (2018) 22:180 https://doi.org/10.1186/s13054-018-2107-9

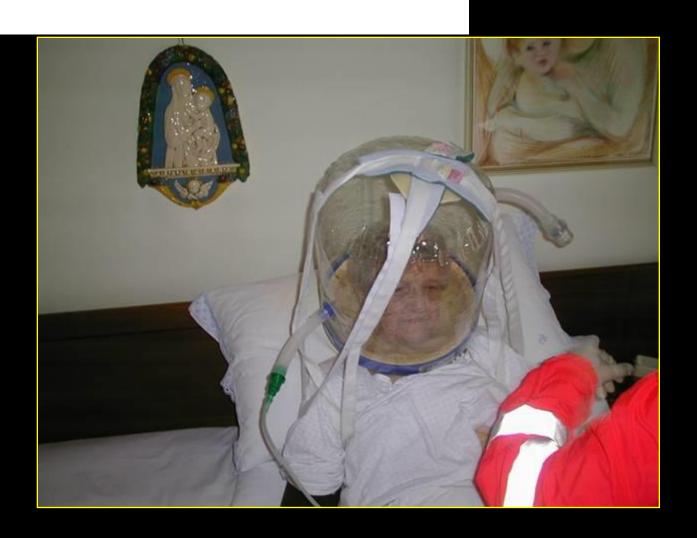
Rosa Di mussi¹, Savino Spadaro², Tania Stripoli¹, Carlo Alberto Volta², Paolo Trerotoli³, Paola Pierucci⁴, Francesco Staffieri⁵, Francesco Bruno¹, Luigi Camporota⁶ and Salvatore Grasso^{1*}

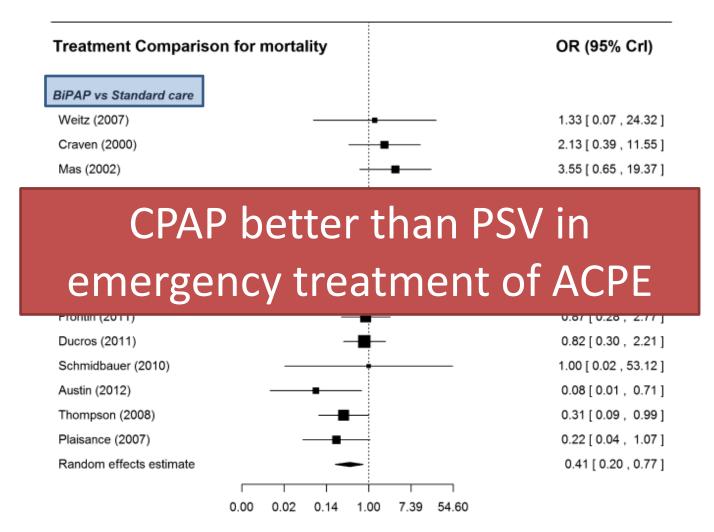



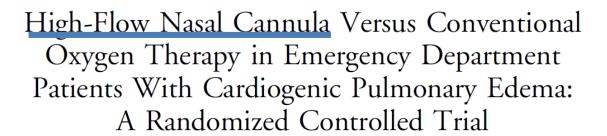

Fig. 3 Experimental record showing the diaphragm electrical activity (EAdi) in the three experimental conditions in three representative patients. Conventional O₂ period of conventional low flow oxygen therapy through a non-occlusive face mask, HFNC1 first period of high flow nasal cannula oxygen therapy, HFNC2 second period of high flow nasal cannula oxygen therapy


High-flow nasal cann of the second section of the second work of the second with chronic obstruct of the second se

Rosa Di mussi¹, Savino Spadaro², Tania Stripoli¹, Francesco Staffieri⁵, Francesco Bruno¹, Luigi Cam


i mussi et al. Critical Care (2018) 22:180 ttps://doi.org/10.1186/s13054-018-2107-9


Giuseppe Foti Fabio Sangalli Lorenzo Berra Stefano Sironi Marco Cazzaniga Gian Piera Rossi Giacomo Bellani Antonio Pesenti


Is helmet CPAP first line pre-hospital treatment of presumed severe acute pulmonary edema?

Prehospital Noninvasive Ventilation for Acute Respiratory Failure: Systematic Review, Network Meta-analysis, and Individual Patient Data Meta-analysis

Steve Goodacre, PhD, John W. Stevens, PhD, Abdullah Pandor, MSc, Edith Poku, MBChB, Shijie Ren, PhD, Anna Cantrell, MA, Vincent Bounes, PhD, Arantxa Mas, MD, Didier Payen, PhD, David Petrie, MD, Markus Soeren Roessler, PhD, Gunther Weitz, MD, Laurent Ducros, MD, and Patrick Plaisance. PhD

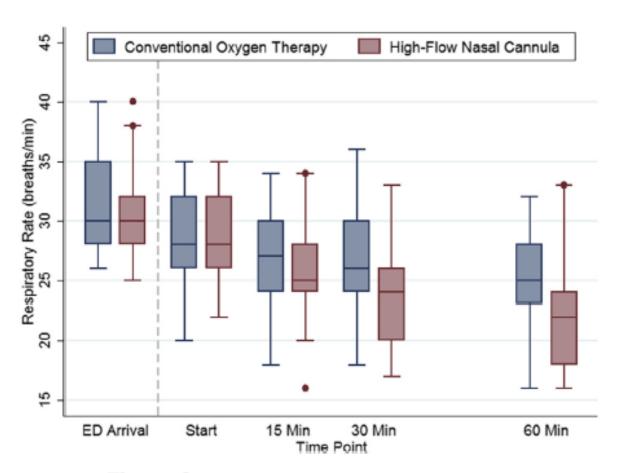
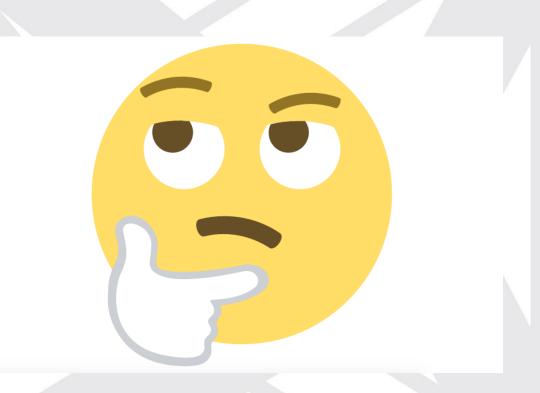
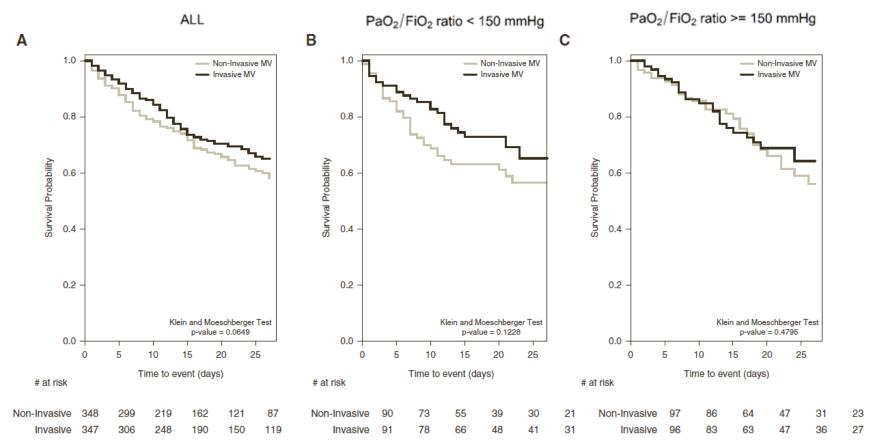



Figure 3. Respiratory rate at each point.

CPAP should be utilized as

FIRST-LINE INTERVENTION in the out/in hospital treatment of Severe Acute Pulmonary Edema

NIV in ARDS pts?


Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure

Clinical indication#	Certainty of evidence 1	Recommendation	
Prevention of hypercapnia in COPD exacerbation	$\oplus \oplus$	Conditional recommendation against	
Hypercapnia with COPD exacerbation	$\oplus \oplus \oplus \oplus$	Strong recommendation for	
Cardiogenic pulmonary oedema	$\oplus \oplus \oplus$	Strong recommendation for	
Acute asthma exacerbation		No recommendation made	
Immunocompromised	$\oplus \oplus \oplus$	Conditional recommendation for	
De novo respiratory failure		No recommendation made	
Post-operative patients	$\oplus \oplus \oplus$	Conditional recommendation for	
Palliative care	$\oplus \oplus \oplus$	Conditional recommendation for	
Trauma	$\oplus \oplus \oplus$	Conditional recommendation for	
Pandemic viral illness		No recommendation made	
Post-extubation in high-risk patients (prophylaxis)	ΦΦ	Conditional recommendation for	
Post-extubation respiratory failure	$\oplus \oplus$	Conditional recommendation against	
Weaning in hypercapnic patients	$\oplus \oplus \oplus$	Conditional recommendation for	

^{#:} all in the setting of acute respiratory failure; 1: certainty of effect estimates: $\oplus \oplus \oplus \oplus$, high; $\oplus \oplus \oplus$, moderate; $\oplus \oplus$, low; \oplus , very low.

Large observational study to UNderstand the Global impact of Severe Acute respiratory Failur (LUNG-SAFE): NIV in ARDS

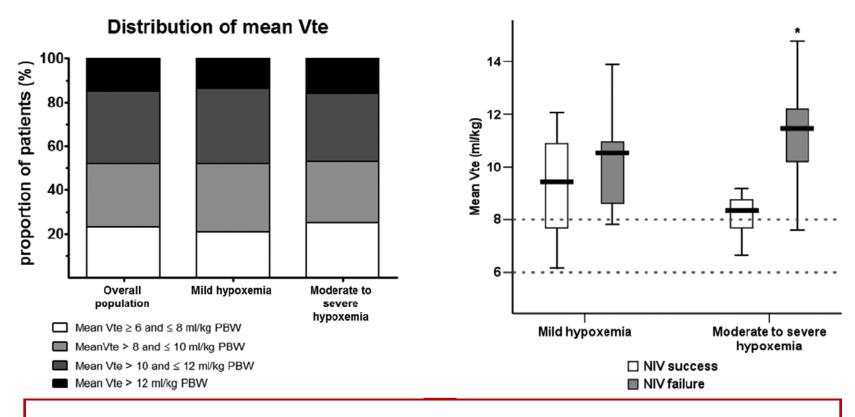
PSV > 90% pts

Self Induced Lung Injury

Physiologic Effects of Noninvasive Ventilation during Acute Lung Injury

Erwan L'Her, Nicolas Deye, François Lellouche, Solenne Taille, Alexandre Demoule, Amanda Fraticelli, Jordi Mancebo, and Laurent Brochard

Réanimation Médicale-Unité INSERM U492, Hôpital Henri Mondor, Creteil Cedex, France


TABLE 2. RESPIRATORY PATTERN AND HEMODYNAMIC PARAMETERS DURING THE FIVE STUDY PERIODS

Variable	Initial*	СРАР	PSV10/PEEP10	PSV15/PEEP5	Final [∥]
Vте, MI	524 ± 212	394 ± 224 [†]	483 ± 247	591 ± 279 ^{‡§}	535 ± 229
RR, breaths/min	29 ± 10	28 ± 11	28 ± 11	26 ½ 9 [†]	30 ± 12
[ਂ] Vε, L/min	15.7 ± 4.4	12.3 ± 3.4	14.6 ± 3.8	$17.6 \pm 5.4^{\ddagger}$	15.6 ± 5.3
Leaks, %	25 ± 13	39 ± 18 [†]	36 ± 18	$37 \pm 22^{\dagger}$	24 ± 15
MAP, mm Hg	77 ± 13	79 ± 16 [†]	77 ± 16	75 ± 16	84 ± 17 [†]
HR, beats/min	100 ± 13	100 ± 9	95 ± 14	96 ± 16	99 ± 14

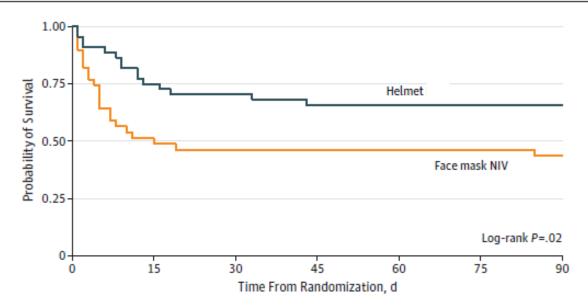
Is it good boost the Tidal Volume?

Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume*

Guillaume Carteaux, MD^{1,2,3}; Teresa Millán-Guilarte, MD⁴; Nicolas De Prost, MD, PhD^{1,2,3}; Keyvan Razazi, MD^{1,2,3}; Shariq Abid, MD, PhD³; Arnaud W. Thille, MD, PhD⁵; Frédérique Schortgen, MD, PhD^{1,3}; Laurent Brochard, MD^{3,6,7}; Christian Brun-Buisson, MD^{1,2,8}; Armand Mekontso Dessap, MD, PhD^{1,2,3}

Higher TV during NIV – PSV is associated to worst outcome

What about Helmet CPAP ARDS pts?



Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome A Randomized Clinical Trial

Bhakti K. Patel, MD; Krysta S. Wolfe, MD; Anne S. Pohlman, MSN; Jesse B. Hall. MD: John P. Kress, MD

Figure 2. Probability of Survival From Randomization to Day 90

Original Article Yonsei Med J 2016 Jul;57(4):936-941

Helmet CPAP versus Oxygen Therapy in Hypoxemic **Acute Respiratory Failure: A Meta-Analysis** of Randomized Controlled Trials

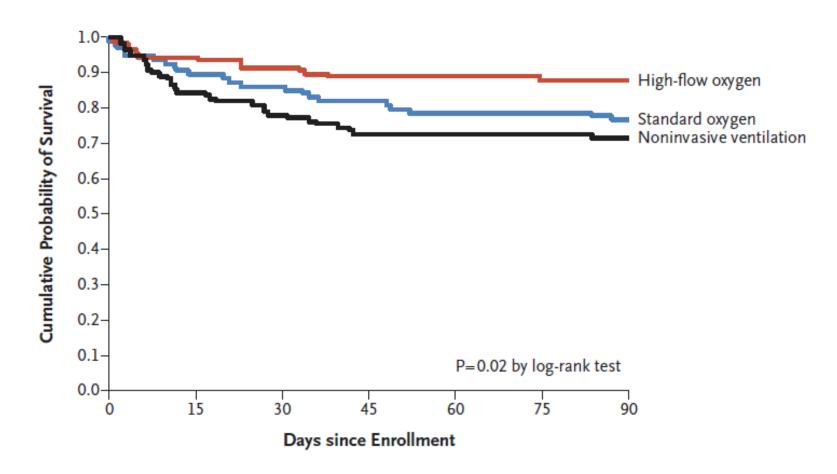
Yuwen Luo^{1*}, Yan Luo^{1*}, Yun Li^{1*}, Luqian Zhou^{2*}, Zhe Zhu¹, Yitai Chen¹, Yuxia Huang¹, and Xin Chen¹

	Experi	mental	Con	trol		Risk ratio	Risk ratio		
Study or subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% C	l	
Brambilla, et al.8	2	40	7	41	27.2%	0.29 [0.06, 1.33]			
Squadrone, et al. ¹¹	0	105	3	104	13.8%	0.14 [0.01, 2.71] +	-		
Squadrone, et al. ¹⁰	3	20	15	20	59.0%	0.20 [0.07, 0.59]			
Total (95% CI)		165		165	100.0%	0.22 [0.09, 0.50]	•		
Total events Heterogeneity: chi ² =0.25, df			25			⊢ 0.0	1 0.1 1	10	100
Test for overall effect: Z=3.5	66 (p=0.0004))					CPAP reduces mortality CPA	AP increases mor	tality

Fig. 6. Forest plot: effect of helmet CPAP on in-hospital mortality in patients with hARF. CI, confidence interval; CPAP, continuous positive airway pressure; hARF, hypoxemic acute respiratory failure.

¹Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou;

The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou,


The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

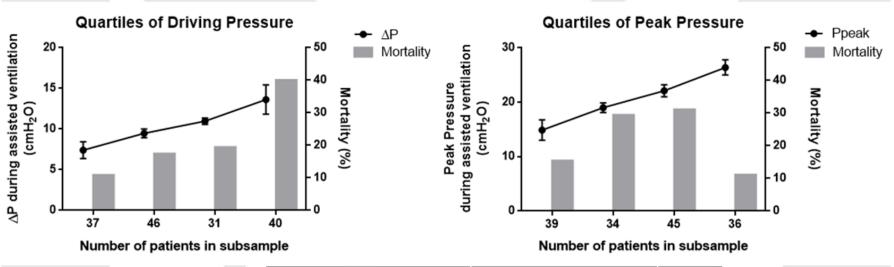
JUNE 4, 2015

VOL. 372 NO. 23

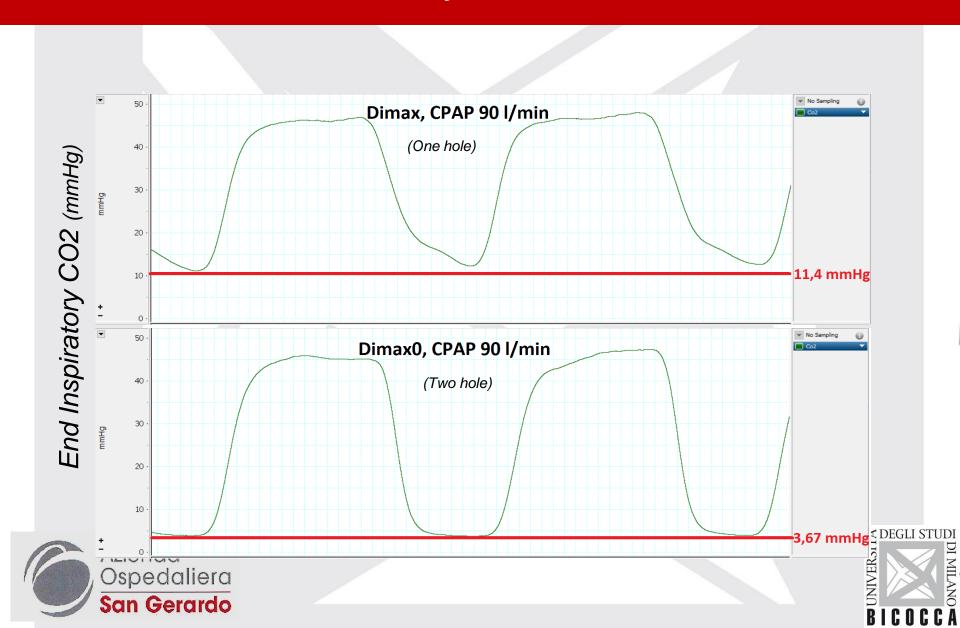
High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

NIV in ARDS: cosa faccio

- > NO PSV
- ➤ CPAP and HFNC ⇒OK
 - CPAP in PEEP Responders
 - ➤ HFNC in PEEP non Responders
 - HFNC between Helmet CPAP cycles
- ➤ <u>Be Aware of High TV</u> during spontaneous breathing
 - Persistent Low PaCO2 is not a good sign



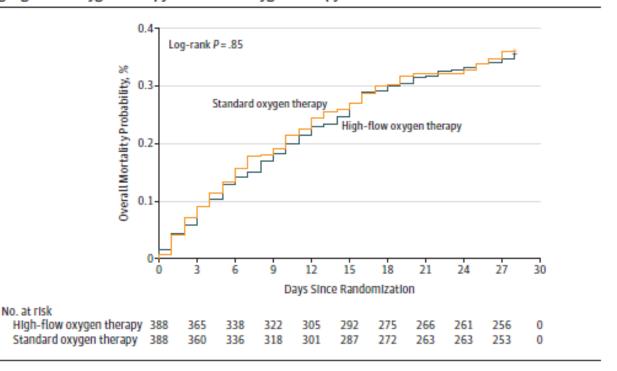
Association with outcome


	Odds Ratio	P-Value
	(95% CI)	
MODEL 1 (includes Driving Pressur	re)	
Age (years)	1.05 (1.04, 1.07)	0.004
SOFA Score	1.2 (1.13, 1.27)	0.007
PEEP during PSV (cmH ₂ O)	0.84 (0.77, 0.92)	0.028
ΔP during PSV (cmH ₂ O)	1.34 (1.25, 1.44)	0.001
PaO ₂ /FiO ₂ during PSV	1.00 (1.00, 1.01)	0.666
pH during PSV	1.12 (0.35, 1.88)	0.884

Bellani G, Grassi A, Sosio S, Gatti S, Kavanagh BP, Pesenti A, Foti G.

Driving Pressure is associated with Outcome during Assisted Ventilation in Acute Respiratory Distress Syndrome. Anesthesiology, in press

TERSITA IDEDITION IN IDEDITION


Effect of Face Mask design on CO2 rebreathing during CPAP: Healthy Volunteers

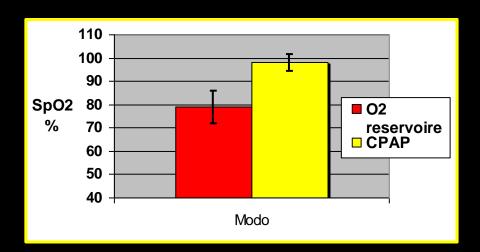
The HIGH Randomized Clinical Trial

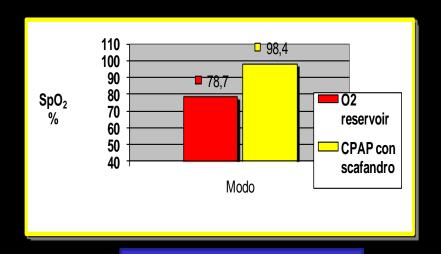
Effect of High-Flow Nasal Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Patients With Acute Respiratory Failure

Figure 2. Probability of Day-28 Mortality in Immunocompromised Patients With Acute Respiratory Failure Receiving High-Flow Oxygen Therapy or Standard Oxygen Therapy

Median survival was not reached in either group.

Nasal High-Flow oxygen therapy: potential advantages


potential auvantages


- 1) Accurate FiO₂ delivery
- 2) Washout of nasopharyngeal dead space
- 3) Provision of a small degree of positive airway

pressure

4) Improved comfort and compliance

Giuseppe Foti Fabio Sangalli Lorenzo Berra Stefano Sironi Marco Cazzaniga Gian Piera Rossi Giacomo Bellani Antonio Pesenti Is helmet CPAP first line pre-hospital treatment of presumed severe acute pulmonary edema?

Con Farmaci

Senza Farmaci

HelmetCPAP in ARDS: when to STOP

WARNING !! DELAYED INTUBATION in pts with P/F < 100 and PEEP 10

reservoir mask 3 hours

last step

The use of helmets to deliver non-invasive continuous positive airway pressure in hypoxemic acute respiratory failure

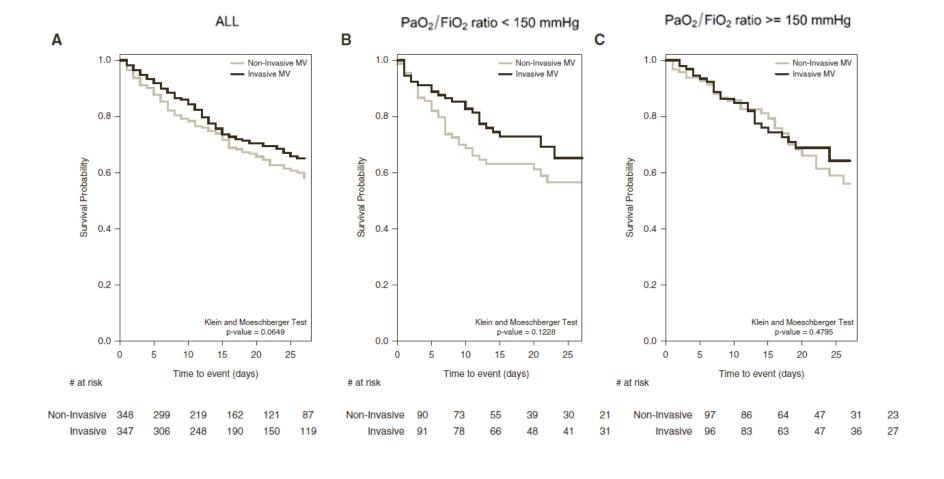
G. BELLANI 1, 2, N. PATRONITI 1, 2, M. GRECO 1, 2, G. FOTI 2, A. PESENTI 1, 2

Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome A Randomized Clinical Trial

Bhakti K. Patel, MD; Krysta S. Wolfe, MD; Anne S. Pohlman, MSN; Jesse B. Hall, MD; John P. Kress, MD

Video demonstration of how a helmet interface for noninvasive ventilation is assembled and applied to the patient and description of initial ventilator settings.

Rotating Interfaces:


HELMET PSV

Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG-SAFE):

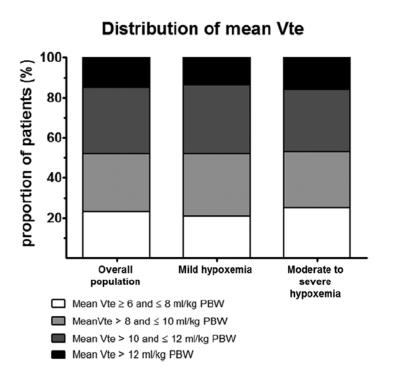
NIV in ARDS

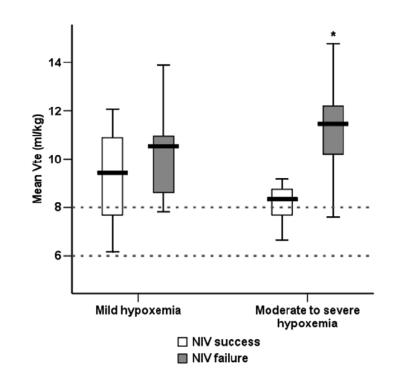
Physiologic Effects of Noninvasive Ventilation during Acute Lung Injury

Erwan L'Her, Nicolas Deye, François Lellouche, Solenne Taille, Alexandre Demoule, Amanda Fraticelli, Jordi Mancebo, and Laurent Brochard

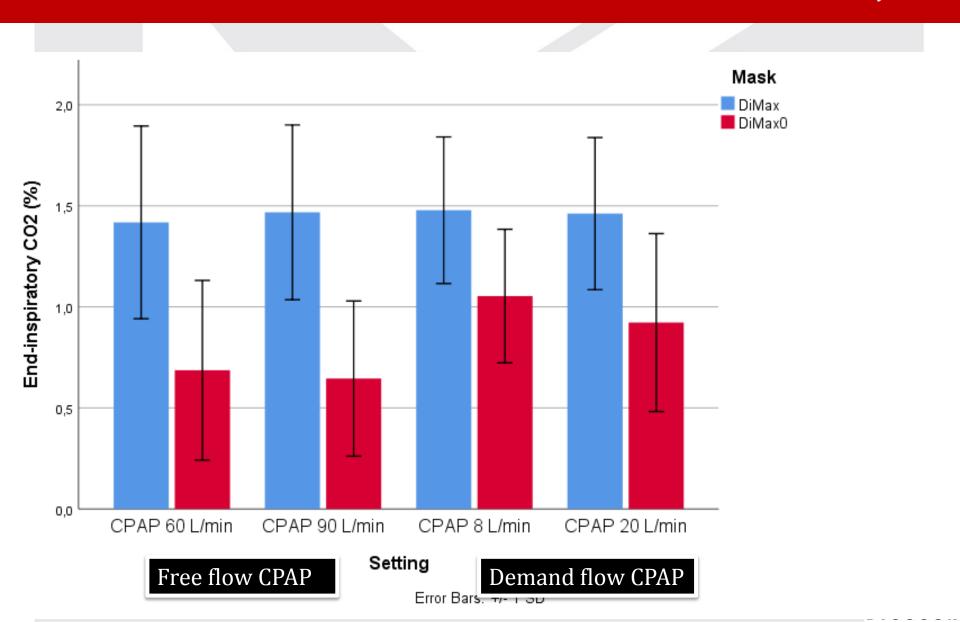
Réanimation Médicale-Unité INSERM U492, Hôpital Henri Mondor, Creteil Cedex, France

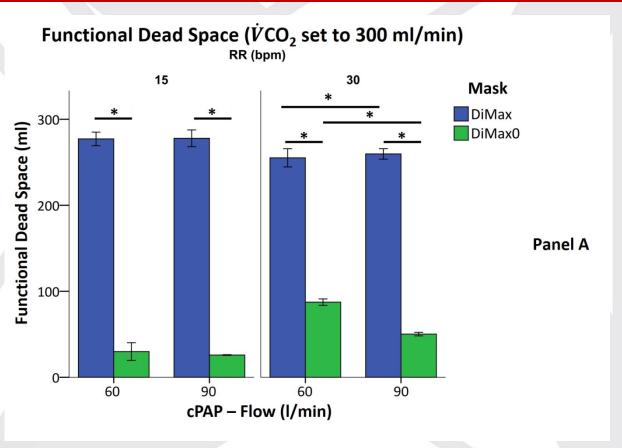
TABLE 2. RESPIRATORY PATTERN AND HEMODYNAMIC PARAMETERS DURING THE FIVE STUDY PERIODS


Variable	Initial*	CPAP	PSV10/PEEP10	PSV15/PEEP5	Final [∥]
Vте, MI	524 ± 212	394 ± 224 [†]	483 ± 247	591 ± 279 ^{‡§}	535 ± 229
RR, breaths/min	29 ± 10	28 ± 11	28 ± 11	26 ± 9 [†]	30 ± 12
Ϋ _E , L/min	15.7 ± 4.4	12.3 ± 3.4	14.6 ± 3.8	$17.6 \pm 5.4^{\ddagger}$	15.6 ± 5.3
Leaks, %	25 ± 13	$39 \pm 18^{\dagger}$	36 ± 18	$37 \pm 22^{\dagger}$	24 ± 15
MAP, mm Hg	77 ± 13	$79 \pm 16^{\dagger}$	77 ± 16	75 ± 16	$84 \pm 17^{\dagger}$
HR, beats/min	100 ± 13	100 ± 9	95 ± 14	96 ± 16	99 ± 14


The dark side of spontaneous breathing

Risk of high Vt High inspiratory pressure


The danger of PSV in ARDS



Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume*

Effect of Face Mask design on CO2 rebreathing during CPAP: Healthy Volunteers Preliminary data

Effect of Face Mask design and CPAP flow on CO2 rebreathing during non-invasive ventilation

