

Segreteria Organizzativa e Provider ECM: Start Promotion Srl Via Mauro Macchi, 50 - 20124 Milano T: +39 02 67071383 | F: +39 02 67072294 info@startpromotion.it | www.startpromotion.it

USCANY Critical Care Group Firenze, 25/26 Settembre 2019

FOCUS 3: UTRASUONI - PER LA VOLEMIA

Antonio Messina, MD, PhD

Department Anesthesia and Intensive Care Unit

Chief: Prof. Maurizio Cecconi

Humanitas Research Hospital – Rozzano (MI), Italy

antonio.messina@humanitas.it

INIVERS

Disclosures

Туре	Company			
Travel expenses and registration for	Vygon			
meetings and congresses				

Fluid therapy in critically ill patients

Early resuscitation

- ECHO to avoid mistakes
- ECHO to confirm diagnosis /reduce uncertainity

Late resuscitation

- ECHO to assess fluid responsiveness
- ECHO to target fluid therapy

Intensive Care Med https://doi.org/10.1007/s00134-019-05713-y

What should I use next if clinical evaluation and echocardiographic haemodynamic assessment is not enough?

Antonio Messina, Massimiliano Greco, and Maurizio Cecconi

Curr Opin Crit Care 2019, 25:259-265

• Goal-directed echocardiography is not a comprehensive echocardiogram performed by

highly skilled and certified echocardiographers. In fact, its scope at bedside is to provide

images instead of numbers, and a qualitative evaluation of cardiac structure and function.

 For this reason, the key challenge of the goal-directed echocardiography is obtaining the most informative pictures, using very few, echocardiographic views in very complex clinical scenarios.

Early fluid resuscitation

Ipertrofia VD e dilatazione VD e AD

Early fluid resuscitation

ECHO to avoid mistakes

- 20 y.o lady.
- Admitted to the ED for fever (39.1)r and tachycardia (TPSV?)
 - Received 2 cardiological examinations treated with adenosine and verapamil
- History of asthenia and weight loss
- Confused and sweaty

02/ MI 1,3 TIS 0,6 13.3 I.R.H. -T.I.G. J 100% ٨

Early fluid resuscitation

ECHO to avoid mistakes

- 68 y.o mand. History of Hypertension; COPD? (smoker).
- Admitted to the ED for fever started at home (38.6)r and tachycardia (115 bpm)
- Confused and sweaty
- WBC 25.000; PCR 40 mg/L, PA 80/40, CRT 4 sec; Lactates 6 mmol/L
- Pyuria

Hour bundle

Initial resuscitation for sepsis and septic shock (begin immediately)

- 1 Measure lactate level*
- 2 Obtain blood cultures before administering antibiotics
- Administer broad-spectrum antibiotics
- Begin to rapidly administer 30mL/kg crystalloid for hypotension or lactate ≥4 mmol/L

After 2 L of Crystalloids, still

hypotensive.

• Norepinephrine up to 0.5

mcg/kg/min

Late fluid resuscitation

Without echo

With echo

Static evaluation:

Static pressure measurements

• Dynamic evaluation:

Dynamic indexes (PPV/SVV)

Functional Hemodynamic Tests (PLR, EEOT, mini-FC)

• Static evaluation:

Intracardiac Volumes Static pressures estimation

• Dynamic evaluation:

Dynamic indexes (IVC collapsibility, VTI/SV changes) Functional Hemodynamic Tests (PLR, EEOT, mini-FC)

Static echo evaluation

Left ventricle size

- No clear cut-off can be proposed for reliable prediction of fluid responsiveness.
- Response to fluids is often observed in patients with very small ventricular cavities, especially when associated with kissing papillary muscles whereas it is unlikely in patients with dilated left or right ventricles.

Ann Am Thorac Soc Vol 11, No 1, pp 129–136, Jan 2014

Dynamic echo evaluation

Jugular vein distensibility predicts fluid responsiveness in septic patients

Guarracino *et al. Critical Care* (2014) 18:647 DOI 10.1186/s13054-014-0647-1

Figure 1 Ultrasound probe position for internal jugular vein detection at the cricoid cartilage level. The patient is in the supine position at 30° with head rotation of 30°.

ORIGINAL

Only TEE

Antoine Vieillard-Baron Karim Chergui Anne Rabiller Olivier Peyrouset Bernard Page Alain Beauchet François Jardin Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients

The threshold SCV collapsibility of **36%** allowed discrimination between responders (defined by an increase in cardiac index of at least 11% induced by volume expansion) and nonresponders, with a **sensitivity of 90% and a specificity of 100%.**

IVC echographic evaluation

The good

The bad

Intensive Care Ultrasound: VI. Fluid Responsiveness and Shock Assessment

Daniel De Backer and David Fagnoul

Ann Am Thorac Soc Vol 11, No 1, pp 129–136, Jan 2014

IVC Measurement

- 1. The cardiac probe in a subxiphoid position perpendicular to the skin (a transverse plane)
- 2. The probe is then rotated by 90° to obtain a longitudinal plane (to identify the hepatic veins and entrance of the IVC into the right atrium)
- 3. The probe centered on the vessel in the same location during the entire respiratory cycle, preventing motion artifact (Three measurements should be averaged)
- 4. The IVC diameter can be measured either close to its entrance to the right atrium (influenced more by contraction of the diaphragm but less susceptible to motion artifact) or 1 to 2 cm caudal to the hepatic vein–IVC junction (approximately 3–4 cm from the junction of the IVC and the right atrium).
- 5. Whatever the location, the measurement is valid only when there are no active contractions of abdominal wall muscles or raised intraabdominal pressure .

Intensive Care Ultrasound: VI. Fluid Responsiveness and Shock Assessment

Daniel De Backer and David Fagnoul

Ann Am Thorac Soc Vol 11, No 1, pp 129-136, Jan 2014

IVC Measurement

Diagnostic Accuracy of the Inferior Vena Cava Collapsibility to Predict Fluid Responsiveness in Spontaneously Breathing Patients With Sepsis and Acute Circulatory Failure

CCM March 2017 • Volume 45 • Number 3

Patients: 90 Non intubated patients without mechanical ventilation presenting with sepsis-induced acute circulatory failure

Interventions: We assessed hemodynamic status at baseline and after a volume expansion induced by a 30-minute infusion of 500-mL gelatin 4%.

Oral cavity pressures were recorded with commercially available MP101 micromanometers (KIMO Instrument, Montpon, France). The deep standardized inspiration consisted of a brief (< 5 s) and continuous inspiration strain that did not go beyond a maximum inhalation. Patients were orally guided to generate a minimum buccal pressure from -5 to -10 mm H2 O without any respiratory resistor.

Hemodynamic Parameters	Area Under Receiver Operating Characteristic Curve [95% Cl]	Threshold	Sensitivity [95% Cl]	Specificity [95% Cl]
C _{index} man	0.89 [0.82-0.97]	>48	0.84 [0.71-0.93]	0.90 [0.76–0.97]
	-	> 39	0.90	
		>48		0.90
C _{index} st	0.82 [0.73–0.91]	>31	0.76 [0.62-0.87]	0.88 [0.73-0.96]
index	-	>13	0.90	
		>41		0.90
Dia man	0.68 [0.57–0.80]	< 19	0.76 [0.62–0.87]	0.68 [0.51-0.81]
Dia _{exp} man	J	< 24	0.90	
		< 12		0.90
Dia st	0.73 [0.62-0.84]	< 20	0.78 [0.64-0.88]	0.65 [0.48-0.79]
Didexp St	J	< 22	0.90	
		< 13		0.90

Functional hemodynamic test on IVC in SB ICU patients

C.W.C. Lee et al. / Journal of Critical Care 31 (2016) 96-100

ORIGINAL ARTICLE

Comparison of Echocardiographic Indices Used to Predict Fluid Responsiveness in Ventilated Patients

Philippe Vignon^{1,2,3}, Xavier Repessé^{4*}, Emmanuelle Bégot^{1,2*}, Julie Léger⁵, Christophe Jacob⁶, Koceila Bouferrache⁷, Michel Slama⁸, Gwenaël Prat⁶, and Antoine Vieillard-Baron^{4,9,10}

AJRCCM Vol. 195, No. 8 | Apr 15, 2017

Figure 1. Flow chart of the study. *A single patient may cumulate different criteria. PLR = passive leg raise; TEE = transesophageal echocardiography.

Dynamic Paran	neters	Threshold Value (%)	Sensiti [% (95%	vity (<i>CI</i>)	Spe [% <i>(</i> 9	cificity 5% <i>CI)</i>]	Area under the Curve	er e
Study population $(n = 540)$ $\Delta PP (n = 424)$ $\Delta VmaxAo (n = 421)$ $\Delta SVC (n = 538)$ $\Delta IVC (n = 422)$ Subset of patients with all dynamic parameters available (n = 319) ΔPP $\Delta VmaxAo$ ΔSVC ΔIVC		≥11 ≥10 ≥21 ≥8	58 (53- 79 (75- 61 (57- 55 (50-	-62) -83) -66) -59)	72(64(84(70(68–76) 59–69) 81–87) 66–75)	0.675 0.752 0.755 0.635	
		≥11 ≥9.4 ≥21 ≥13	155 (49–60).478 (74–83)163 (58–68)344 (39–49)		73 (68–78) 60 (55–66) 81 (77–86) 85 (81–89)		0.657 0.720 0.742* 0.653	
Dynamic Parameters Se	Threshold Value for Optimized ensitivity (9	Optim Sensi (Assoc %) Specific	nized tivity siated ity) (%)	Th Va Op Spec	reshold alue for otimized cificity (l O Sj i (As %) Sen	ptimized pecificity ssociated sitivity) (%))
$\begin{array}{c} \Delta PP \ (n = 424) \\ \Delta V maxAo \end{array} \begin{array}{c} 4 \\ 7 \end{array}$		92 (90 (19) 39)	ſ	18 18		89 (28) 90 (29)	
(n = 421) ΔSVC (n = 538)	4	89 (25)		31		90 (43)	
∆IVC (n = 422)	3	74 (36)		18		90 (28)	

Functional hemodynamic tests

GUIDELINES AND RECOMMENDATIONS

Predicting and measuring fluid responsiveness with echocardiography

flow volume (SV) = SD (or VTI) \times CSA

Respiratory Changes in Aortic Blood Velocity as an Indicator of Fluid Responsiveness in Ventilated Patients With Septic Shock*

Marc Feissel, MD; Frédéric Michard, MD; Isabelle Mangin, MD; Olivier Ruyer, MD; Jean-Pierre Faller, MD; and Jean-Louis Teboul, MD, PhD

(CHEST 2001; 119:867-873)

 $\Delta Vpeak (\%) = 100 * (Vpeakmax - Vpeakmin)$ [(Vpeakmax + Vpeakmin)/2]

Avpeak threshold value of 12% allowed discrimination between responders and nonresponders with a sensitivity of 100% and a specificity of 89%.

Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis

Xavier Monnet Paul Marik Jean-Louis Teboul

	Setting	Main device used to estimate cardiac output	Indication for volume expansion	No. of included patients	No. of fluid challenges	Type of patients	Spontaneous breathing	Cardiac rhythm
Monnet et al. [34]	ICU	Calibrated PCA	ACF	34	34	Adults	SB and non-SB	Sinus and arrhythmias
Monnet et al. [18]	ICU	Calibrated PCA	ACF	54	54	Adults	Non-SB	Sinus
Dong et al. [12]	ICU	Calibrated PCA	Severe sepsis and septic shock	32	32	Adults	Non-SB	Sinus
Kupersztych-Hagège et al. [13]	ICU	Calibrated PCA	ACF	48	48	Adults	SB and non-SB	Sinus and arrhythmias
Silva et al. [14]	ICU	Calibrated PCA	ACF	20	20	Adults	SB and non-SB	Sinus and arrhythmias
Monnet et al. [17]	ICU	Calibrated PCA	ACF	40	40	Adults	Non-SB	Sinus/arrhythmias
Lamia et al. [32]	ICU	Echocardiography	ACF	24	24	Adults	SB	Sinus and arrhythmias
Maizel et al. [37]	ICU	Echocardiography	ACF	34	34	Adults	SB	Sinus only
Biais et al. [35]	ICU	Echocardiography	ACF	30	30	Adults	SB	No mention
Préau et al. [36]	ICU	Echocardiography	ACF (sepsis or pancreatitis)	34	34	Adults	SB	Sinus
Guinot et al. [16]	ICU	Echocardiography	ACF (under ECMO)	25	25	Adults	Non-SB	No mention
Brun et al. [19]	ICU	Echocardiography	Pre-eclampsia	23	23	Adults	SB	Sinus
Monnet et al. [9]	ICU	Esophageal Doppler	ACF	71	71	Adults	SB and non-SB	Sinus and arrhythmias
Lafanechère et al. [31]	ICU	Esophageal Doppler	ACF	22	22	Adults	Non-SB	Sinus only
Monge-Garcia et al. [15]	ICU	Esophageal Doppler	ACF	37	37	Adults	Non-SB	Sinus
Kang et al. [25]	ICU	Bioreaciance	ACF (after cardiac surgery)	54	34	Aduits	NON-SB	Sinus
Benomar et al. [22]	ICU	Bioreactance	ACF (after cardiac surgery)	75	75	Adults	No mention	No mention
Marik et al. [20]	ICU	Bioreactance	ACF	34	34	Adults	SB and non-SB	Sinus only
Duus et al. [11]	ED	Bioreactance	ACF	109	100	Adults	SB	No mention
Lakkhal et al. [21]	ICU	PAC + TPTD	ACF	102	102	Adults	Non-SB	Sinus
Thiel et al. [33]	ICU	Suprasternal Doppler	ACF	89	102	Adults	SB and non-SB	Sinus and arrhythmias

Table 1 Main characteristics of included studies

Intensive Care Med DOI 10.1007/s00134-015-4134-1

REVIEW

Critical Care

Open Access

CrossMark

Pearls and pitfalls in comprehensive critical care echocardiography

Sam Orde^{1*}^(b), Michel Slama², Andrew Hilton³, Konstantin Yastrebov⁴ and Anthony McLean¹

- Anchor your hand on the patient to keep the same position pre- and post-PLR to ensure efficient imaging and the same pulsed Doppler gate position and angle of Doppler interrogation (Fig. 4a inset)
- 2. Optimise the LVOT Doppler profile for stroke volume assessment (as per the "Accurate stroke volume assessment" section) with appropriate gain, scale and sweep speed. Assess stroke volume pre-PLR, 1 minute post-PLR and again once supine [11], at the *same time* in the respiratory cycle, using an increase (and subsequent decrease to baseline once supine again) of 15% as a marker of a responder [8].

Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients

Xavier Monnet, MD, PhD; David Osman, MD; Christophe Ridel, MD; Bouchra Lamia, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

RESEARCH

Open Access

End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: an echocardiographic study

Delphine Georges¹, Hugues de Courson¹, Romain Lanchon¹, Musa Sesay¹, Karine Nouette-Gaulain^{1,2,3} and Matthieu Biais^{1,3,4*}¹

- 50 mechanically ventilated critically ill patients. **Velocity time integral and peak velocity** were assessed using transthoracic echocardiography before and at the end of a 12-sec end-expiratory-occlusion maneuver.
- A third set of measurements was performed after volume expansion (500 mL of saline 0.9% given over 15 minutes).
- Patients were considered as responders if cardiac output increased by 15% or more after volume expansion.

Table 3 Ability to predict increase in cardiac output ≥15% after infusion of 500 mL saline over 15 minutes

Index	Best threshold	Gray zone	Patients whose measurements were in the gray zone	AUROC (95% CI)	Sensitivity (95% Cl)	Specificity (95% CI)	Youden index J
Δντι	>9%	6–10%	20%	0.96±0.03	89% (72–98%)	95% (77–100%)	0.85 💛
∆Vmax	>8.5%	1–13%	62%	0.70 ± 0.07	<mark>64% (44–81%)</mark>	77% (55–92%)	0.42 💽 💌

Best threshold value was determined using the Youden index. Youden Index J = Sensitivity + Specificity – 1. Δ VTI represents changes in velocity time integral induced by end-expiratory occlusion. Δ Vmax represents changes in peak velocity induced by end-expiratory occlusion *AUROC* area under receiver operating characteristics curves. *Cl* confidence interval

Predicting and measuring fluid

responsiveness

ID: 16-0008; June 2016

DOI: 10.1530/ERP-16-0008

A Miller and J Mandeville

Figure 7

(A) PWD in the LV outflow tract. VTI measurement of the smallest and largest envelope within the respiratory cycle. (B) Measuring $V_{\rm max}$ variation with appropriate sweep speed.

danke

спасибо

merci

شکرا

Thank you

igracias

хвала

ありがとう

谢谢