# PATIENT BLOOD MANAGEMENT IN THE CRITICAL PATIENT.

### M. Ranucci

Director of Clinical Research Dept of Cardiothoracic and Vascular Anesthesia and Intensive Care IRCCS Policlinico S.Donato

### DISCLOSURES

Marco Ranucci received honoraria, consultancy fees, and reaserch grants from the following companies:

Medtronic Grifols CSL Behring Sorin The Medicines Company Talecris Novo Nordisk

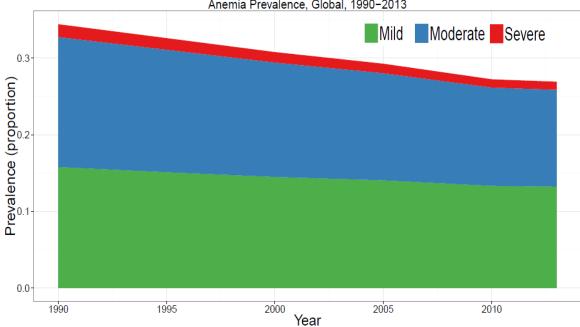


# **TWO ISSUES**

# 1. PREOPERATIVE ANEMIA

# 2. LIBERAL vs RESTRICTIVE TRANSFUSIONS






# 1. PREOPERATIVE ANEMIA

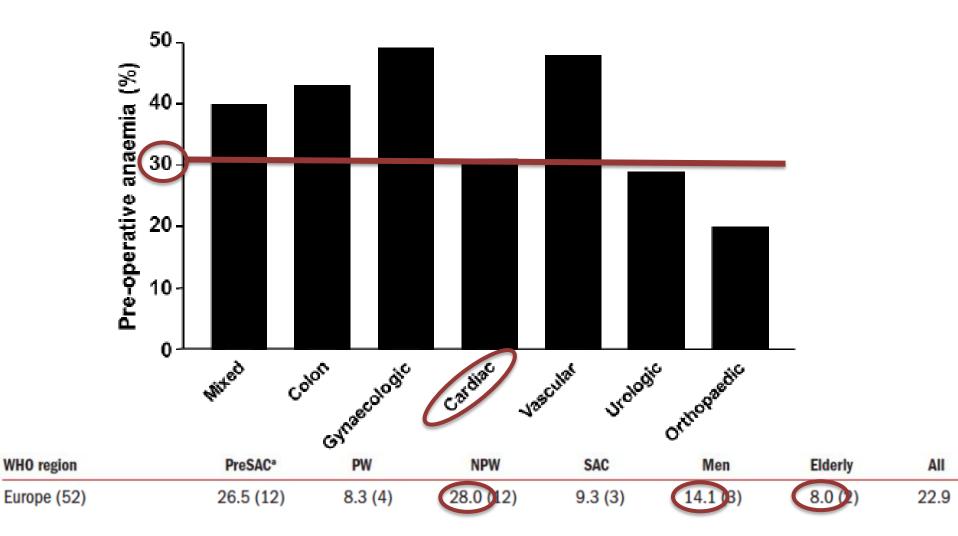
# 2. LIBERAL vs RESTRICTIVE TRANSFUSIONS





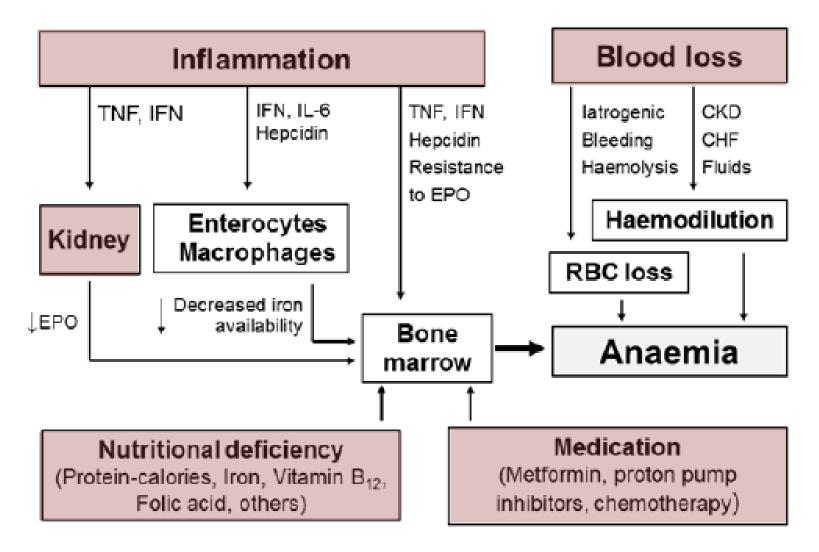


Population coverage (%) by anaemia prevalence surveys (national or subnational) conducted between 1993 and 2005

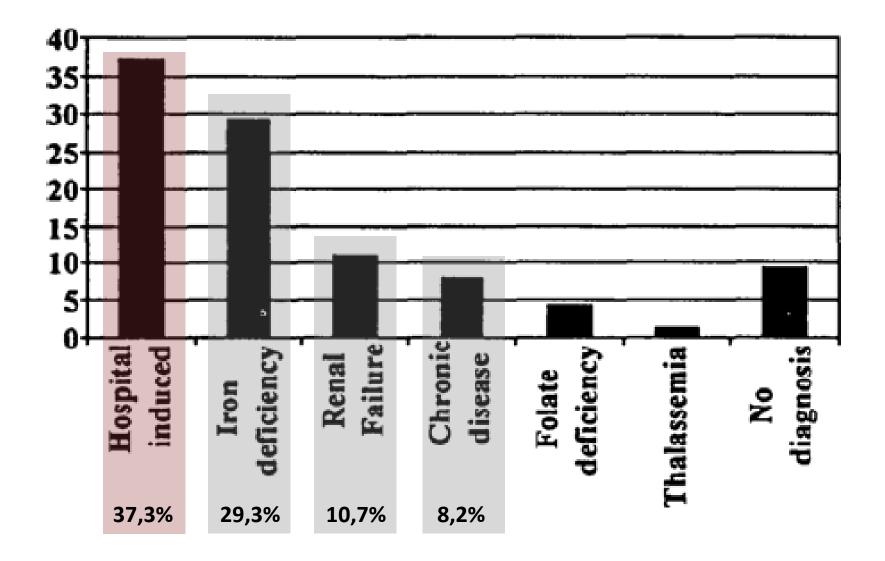

| WHO region                 | PreSAC <sup>a</sup>    | PW        | NPW       | SAC       | Men       | Elderly   | AII  |
|----------------------------|------------------------|-----------|-----------|-----------|-----------|-----------|------|
| Africa (46) <sup>b</sup>   | 74.6 (26) <sup>₀</sup> | 65.8 (22) | 61.4 (23) | 13.2 (8)  | 21.9 (11) | 0.0 (0)   | 40.7 |
| Americas (35)              | 76.7 (16)              | 53.8 (15) | 56.2 (13) | 47.1 (9)  | 34.3 (2)  | 47.6 (1)  | 58.0 |
| South-East Asia (11)       | 85.1 (9)               | 85.6 (8)  | 85.4 (10) | 13.6 (3)  | 4.1 (2)   | 5.2 (1)   | 14.9 |
| Europe (52)                | 26.5 (12)              | 8.3 (4)   | 28.0 (12) | 9.3 (3)   | 14.1 (3)  | 8.0 (2)   | 22.9 |
| Eastern Mediterranean (21) | 67.4 (11)              | 58.7 (7)  | 73.5 (11) | 15.5 (6)  | 27.5 (6)  | 3.2 (3)   | 84.3 |
| Western Pacific (27)       | 90.4 (10)              | 90.2 (8)  | 96.9 (13) | 83.1 (7)  | 96.2 (10) | 93.3 (6)  | 13.8 |
| Global (192)               | 76.1 (84)              | 69.0 (64) | 73.5 (82) | 33.0 (36) | 40.2 (34) | 39.1 (13) | 48.8 |

<sup>a</sup> Population groups: PreSAC, preschool-age children (0.00-4.99 yrs); PW, pregnant women (no age range defined); NPW, non-pregnant women (15.00-49.99 yrs), SAC, school-age children (5.00-14.99 yrs), Men (15.00-59.99 yrs), Elderly (≥60.00 yrs).

Number of countries in each grouping.


<sup>c</sup> Total number of countries with data, no figure is provided for All since each country may be partially covered by some population groups, but few countries have data on all 6 population groups and no countries have data for women 50-59 yrs of age.

Prevalence of pre-operative anaemia in patients scheduled for major surgery, according to most frequent procedures (estimated from references<sup>7-24</sup>). Blood Transfus 2015; **13**; 370-9




# Multifactorial aetiology of preoperative anaemia

Blood Transfus 2015; 13; 370-9



CAN J ANESTH 1999 / 46: 10 / pp 979-982



### Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study

Khaled M Musallam, Hani M Tamim, Toby Richards, Donat R Spahn, Frits R Rosendaal, Aida Habbal, Mohammad Khreiss, Fadi S Dahdaleh, Kaivan Khavandi , Pierre M Sfeir, Assaad Soweid, Jamal J Hoballah, Ali T Taher, Faek R Jamali

#### Summary

Background Preoperative anaemia is associated with adverse outcomes after cardiac surgery but outcomes after non-cardiac surgery are not well established. We aimed to assess the effect of preoperative anaemia on 30-day postoperative morbidity and mortality in patients undergoing major non-cardiac surgery.

Methods We analysed data for patients undergoing major non-cardiac surgery in 2008 from The American College of Surgeons' National Surgical Quality Improvement Program database (a prospective validated outcomes registry from 211 hospitals worldwide in 2008). We obtained anonymised data for 30-day mortality and morbidity (cardiac, respiratory, CNS, urinary tract, wound, sepsis, and venous thromboembolism outcomes), demographics, and preoperative and perioperative risk factors. We used multivariate logistic regression to assess the adjusted and modified (nine predefined risk factor subgroups) effect of anaemia, which was defined as mild (haematocrit concentration >29–<39% in men and >29–<36% in women) or moderate-to-severe (≤29% in men and women) on postoperative outcomes.

Findings We obtained data for 227 425 patients, of whom 69 229 (30·44%) had preoperative anaemia. After adjustment, postoperative mortality at 30 days was higher in patients with anaemia than in those without anaemia (odds ratio [OR] 1·42, 95% CI 1·31–1·54); this difference was consistent in mild anaemia (1·41, 1·30–1·53) and moderate-to-severe anaemia (1·44, 1·29–1·60). Composite postoperative morbidity at 30 days was also higher in patients with anaemia than in those without anaemia (adjusted OR 1·35, 1·30–1·40), again consistent in patients with mild anaemia (1·31, 1·26–1·36) and moderate-to-severe anaemia (1·56, 1·47–1·66). When compared with patients without anaemia or a defined risk factor, patients with anaemia and most risk factors had a higher adjusted OR for 30-day mortality and morbidity than did patients with either anaemia or the risk factor alone.

Interpretation Preoperative anaemia, even to a mild degree, is independently associated with an increased risk of 30-day morbidity and mortality in patients undergoing major non-cardiac surgery.



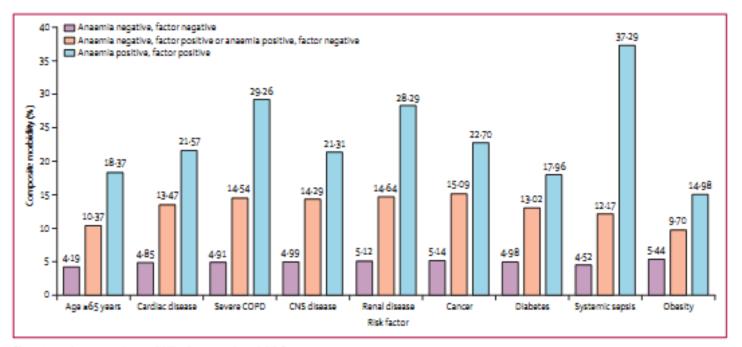



Figure 2: 30-day composite morbidity, by anaemia and risk factor status COPD-chronic obstructive pulmonary disease.



### Meta-analysis of the association between preoperative anaemia and mortality after surgery

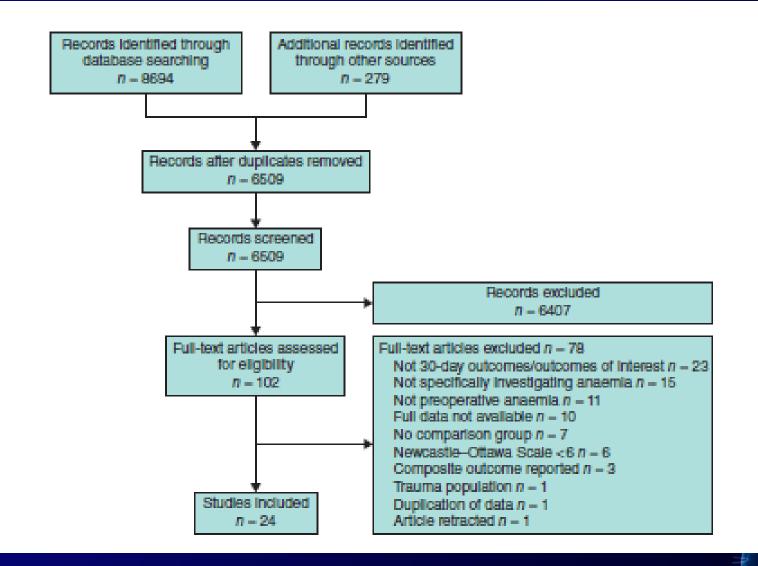
#### A. J. Fowler<sup>1</sup>, T. Ahmad<sup>1</sup>, M. K. Phull<sup>2</sup>, S. Allard<sup>3</sup>, M. A. Gillies<sup>4</sup> and R. M. Pearse<sup>1</sup>

<sup>1</sup>Barts and the London School of Medicine and Dentistry, Queen Mary University of London, and Departments of <sup>2</sup>Anaesthesia and <sup>3</sup>Haematology, Royal London Hospital, Barts Health NHS Trust, London, and <sup>4</sup>Department of Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK

Correspondence to: Professor R. M. Pearse, Adult Critical Care Unit, Royal London Hospital, London El 1BB, UK (e-mail: r.pearse@qmul.ac.uk)

Background: Numerous published studies have explored associations between anaemia and adverse outcomes after surgery. However, there are no evidence syntheses describing the impact of preoperative anaemia on postoperative outcomes.

Methods: A systematic review and meta-analysis of observational studies exploring associations between preoperative anaemia and postoperative outcomes was performed. Studies investigating trauma, burns, transplant, paediatric and obstetric populations were excluded. The primary outcome was 30-day or in-hospital mortality. Secondary outcomes were acute kidney injury, stroke and myocardial infarction. Predefined analyses were performed for the cardiac and non-cardiac surgery subgroups. A *post boc* analysis was undertaken to evaluate the relationship between anaemia and infection. Data are presented as odds ratios (ORs) with 95 per cent c.i.


**Results:** From 8973 records, 24 eligible studies including 949 445 patients were identified. Some 371 594 patients (39·1 per cent) were anaemic. Anaemia was associated with increased mortality (OR 2·90, 2·30 to 3·68;  $I^2 = 97$  per cent; P < 0.001), acute kidney injury (OR 3·75, 2·95 to 4·76;  $I^2 = 60$  per cent; P < 0.001) and infection (OR 1·93, 1·17 to 3·18;  $I^2 = 99$  per cent; P = 0.01). Among cardiac surgical patients, anaemia was associated with stroke (OR 1·28, 1·06 to 1·55;  $I^2 = 0$  per cent; P = 0.009) but not myocardial infarction (OR 1·11, 0·68 to 1·82;  $I^2 = 13$  per cent; P = 0.67). Anaemia was associated with an increased incidence of red cell transfusion (OR 5·04, 4·12 to 6·17;  $I^2 = 96$  per cent; P < 0.001). Similar findings were observed in the cardiac and non-cardiac subgroups.

**Conclusion:** Preoperative anaemia is associated with poor outcomes after surgery, although heterogeneity between studies was significant. It remains unclear whether anaemia is an independent risk factor for poor outcome or simply a marker of underlying chronic disease. However, red cell transfusion is much more frequent amongst anaemic patients.



Paper accepted 20 April 2015 Published online in Wiley Online Library (www.bjs.co.uk). DOI: 10.1002/bjs.9861





|                                             |        | Mor                         | tality                         |            |                    |                        |                          |    |
|---------------------------------------------|--------|-----------------------------|--------------------------------|------------|--------------------|------------------------|--------------------------|----|
| Reference                                   | Year   | Anaemia                     | No anaemia                     | Weight (%) | ) Odds ratio       | Odd                    | s ratio                  |    |
| Gruson et al. <sup>26</sup>                 | 2002   | 5 of 180                    | 3 of 215                       | 1.8        | 2.02 (0.48, 8.57)  |                        |                          |    |
| Cladellas et al. <sup>22</sup>              | 2006   | 9 of 42                     | 10 of 159                      | 2.9        | 4.06 (1.53, 10.79) |                        |                          |    |
| Wu et al. <sup>40</sup>                     | 2007   | 8660 of 132970              | 3351 of 177341                 | 5-9        | 3.62 (3.47, 3.77)  |                        |                          |    |
| Bell et al. <sup>20</sup>                   | 2008   | 325 of 6143                 | 798 of 30196                   | 5-8        | 2.06 (1.80, 2.35)  |                        | -0-                      |    |
| Beattie <i>et al</i> . <sup>19</sup>        | 2009   | 76 of 3047                  | 24 of 4632                     | 4.8        | 4.91 (3.10, 7.79)  |                        |                          |    |
| Melis et al. <sup>30</sup>                  | 2009   | 14 of 197                   | 5 of 216                       | 2.8        | 3.23 (1.14, 9.14)  |                        |                          |    |
| De Santo et al.23                           | 2009   | 25 of 320                   | 16 of 727                      | 4-1        | 3.77 (1.98, 7.16)  |                        | <b>_</b>                 |    |
| Shirzad et al. <sup>37</sup>                | 2010   | 26 of 650                   | 35 of 3782                     | 4-6        | 4.46 (2.67, 7.46)  |                        | _ <b></b>                |    |
| Munoz et al. <sup>31</sup>                  | 2010   | 12 of 210                   | 19 of 366                      | 3.7        | 1.11 (0.53, 2.33)  |                        | - <b></b>                |    |
| Musallam <i>et al.</i> <sup>32</sup>        | 2011   | 3192 of 69229               | 1240 of 158 196                | 5-9        | 6-12 (5-73, 6-54)  |                        | ٠                        |    |
| Boening et al. <sup>21</sup>                | 2011   | 44 of 185                   | 121 of 3126                    | 5-1        | 7.75 (5.28, 11.38) |                        |                          |    |
| Vochteloo et al.39                          | 2011   | 30 of 536                   | 31 of 726                      | 4-6        | 1.33 (0.79, 2.22)  | -                      |                          |    |
| Hung et al. <sup>28</sup>                   | 2011   | 45 of 1463                  | 13 of 1225                     | 4.2        | 2.96 (1.59, 5.51)  |                        | <b>_</b>                 |    |
| Dubljanin-Raspopovic et al.24               | 2011   | 19 of 185                   | 12 of 158                      | 3.7        | 1.39 (0.65, 2.97)  | _                      |                          |    |
| Greenky et al. <sup>25</sup>                | 2012   | 12 of 2991                  | 21 of 12231                    | 3.9        | 2.34 (1.15, 4.77)  |                        | <b>_</b>                 |    |
| Ranucci et al. <sup>34</sup>                | 2012   | 51 of 401                   | 30 of 401                      | 4.8        | 1.80 (1.12, 2.89)  |                        | <b>e</b>                 |    |
| Oshin and Torella <sup>33</sup>             | 2013   | 16 of 193                   | 2 of 167                       | 1.8        | 7-46 (1-69, 32-93) |                        |                          |    |
| Saager <i>et al.</i> <sup>35</sup>          | 2013   | 1288 of 119298              | 811 of 119298                  | 5-9        | 1.59 (1.46, 1.74)  |                        | •                        |    |
| Gupta et al.27                              | 2013   | 368 of 15272                | 206 of 16585                   | 5-8        | 1.96 (1.65, 2.33)  |                        | -0-                      |    |
| van Straten <i>et al.</i> <sup>38</sup>     | 2013   | 20 of 351                   | 38 of 1385                     | 4.5        | 2.14 (1.23, 3.73)  |                        | <b>_</b>                 |    |
| Seicean <i>et al.</i> <sup>36</sup>         | 2013   | 63 of 5879                  | 37 of 18594                    | 5-1        | 5.43 (3.62, 8.16)  |                        |                          |    |
| Jung et al. <sup>29</sup>                   | 2013   | 0 of 125                    | 0 of 463                       |            | Not estimable      |                        |                          |    |
| Zhang et al.41                              | 2013   | 22 of 432                   | 3 of 223                       | 2.3        | 3·93 (1·16, 13·29) |                        | <b>-</b>                 |    |
| Baron <i>et al.</i> <sup>5</sup>            | 2014   | 656 of 11 295               | 604 of 27439                   | 5-9        | 2.74 (2.45, 3.07)  |                        |                          |    |
| Total                                       |        | 14978 of 371594             | 7430 of 577 851                | 100-0      | 2.90 (2.30, 3.68)  |                        | •                        |    |
| Heterogeneity: $\tau^2 = 0.24$ ; $\chi^2 =$ | 768.79 | 9, 22 d.f., <i>P</i> < 0.00 | 1; <i>I</i> <sup>2</sup> = 97% |            | 0-01               | 0.1                    | 1 10                     | 10 |
| Test for overall effect: $Z = 8.88$         |        |                             |                                |            | 0-01               | 0·1<br>Favours anaemia | 1 10<br>Favours no anaem |    |

Fig. 2 Forest plot showing composite outcome of 30-day or in-hospital mortality after surgery, according to author-defined anaemia. Sizes of markers indicate weight for each study according to sample size. A Mantel–Haenszel random-effects model was used for meta-analysis. Odds ratios are shown with 95 per cent c.i.

|                                                    | Acute kid                       | ney injury                    |            |                    |     |                 |           |              |     |
|----------------------------------------------------|---------------------------------|-------------------------------|------------|--------------------|-----|-----------------|-----------|--------------|-----|
| Reference                                          | Anaemia                         | No anaemia                    | Weight (%) | Odds ratio         |     | 0               | dds ratio |              |     |
| Bell et al. <sup>20</sup>                          | 183 of 6143                     | 262 of 30196                  | 26-9       | 3.51 (2.90, 4.25)  |     |                 | -         | -            |     |
| Boening et al. <sup>21</sup>                       | 12 of 185                       | 38 of 3126                    | 9-3        | 5.64 (2.89, 10.98) |     |                 | -         |              |     |
| Cladellas et al. <sup>22</sup>                     | 20 of 42                        | 20 of 159                     | 7.5        | 6-32 (2-94, 13-59) |     |                 | -         |              |     |
| De Santo et al.23                                  | 20 of 320                       | 16 of 727                     | 9-2        | 2.96 (1.51, 5.80)  |     |                 |           | _            |     |
| Munoz et al. <sup>31</sup>                         | 6 of 210                        | 4 of 366                      | 3.2        | 2.66 (0.74, 9.54)  |     |                 |           |              |     |
| Musallam <i>et al.</i> <sup>32</sup>               | 1285 of 69229                   | 675 of 158196                 | 30-9       | 4.41 (4.02, 4.85)  |     |                 |           |              |     |
| Ranucci et al. <sup>34</sup>                       | 28 of 401                       | 18 of 401                     | 10-5       | 1.60 (0.87, 2.94)  |     |                 | <b></b>   |              |     |
| Zhang et al. <sup>41</sup>                         | 22 of 432                       | 2 of 223                      | 2.5        | 5.93 (1.38, 25.45) |     |                 |           |              |     |
| Total                                              | 1576 of 76962                   | 1035 of 193394                | 100-0      | 3.75 (2.95, 4.76)  |     |                 | •         | •            |     |
| Heterogeneity: τ <sup>2</sup> =                    | 0-05; χ <sup>2</sup> = 17-72, 7 | d f. $P = 0.01 \cdot l^2 = 6$ | 0%         | -                  | 1   | 1               |           |              |     |
|                                                    |                                 |                               | 0.00       | 0                  | ·01 | 0-1             | 1         | 10           | 100 |
| Test for overall effect: $Z = 10.79$ , $P < 0.001$ |                                 |                               |            |                    | F   | Favours anaemia | Favo      | ours no anae | mia |

Fig. 3 Forest plot of acute kidney injury, according to author-defined anaemia. Sizes of markers indicate weight for each study according to sample size. A Mantel-Haenszel random-effects model was used for meta-analysis. Odds ratios are shown with 95 per cent c.i.



|                                   | St           | roke             |            |                     |      |                 |               |                    |     |
|-----------------------------------|--------------|------------------|------------|---------------------|------|-----------------|---------------|--------------------|-----|
| Reference                         | Anaemia      | No anaemia       | Weight (%) | Odds ratio          |      | C               | dds ratio     | 0                  |     |
| Bell et al. <sup>20</sup>         | 124 of 6143  | 481 of 30196     | 87-9       | 1.27 (1.04, 1.55)   |      |                 |               |                    |     |
| Boening et al.21                  | 5 of 185     | 82 of 3126       | 4.9        | 1.03 (0.41, 2.58)   |      | _               | $\rightarrow$ | _                  |     |
| Cladellas et al.22                | 2 of 42      | 5 of 159         | 1-1        | 1.54 (0.29, 8.23)   |      |                 | <u> </u> -    |                    |     |
| De Santo et al.23                 | 9 of 320     | 11 of 727        | 3.6        | 1.88 (0.77, 4.59)   |      |                 |               |                    |     |
| Munoz <i>et al.</i> <sup>31</sup> | 0 of 210     | 5 of 366         | 2.2        | 0.16 (0.01, 2.84)   | -    |                 |               | _                  |     |
| Ranucci et al. <sup>34</sup>      | 4 of 401     | 0 of 401         | 0.3        | 9.09 (0.49, 169.40) |      | -               | _             |                    | -   |
| Total                             | 144 of 7301  | 584 of 34 975    | 100-0      | 1.28 (1.06, 1.55)   |      |                 | •             |                    |     |
| Heterogeneity: $\chi^2$ =         | -4.73.5df_P- | $0.45.l^2 - 0\%$ |            |                     |      |                 |               |                    |     |
| Test for overall effe             |              |                  |            |                     | 0.01 | 0-1             | 1             | 10                 | 100 |
|                                   |              |                  |            |                     |      | Favours anaemia | - I           | Favours no anaemia | L   |


Fig. 4 Forest plot of stroke, according to author-defined anaemia. Sizes of markers indicate weight for each study according to sample size. A Mantel-Haenszel fixed-effect model was used for meta-analysis. Odds ratios are shown with 95 per cent c.i.

|                                       | Myocardia            | al infarction |            |                    |      |                 |        |                    |     |
|---------------------------------------|----------------------|---------------|------------|--------------------|------|-----------------|--------|--------------------|-----|
| Reference                             | Anaemia              | No anaemia    | Weight (%) | Odds ratio         |      | 0               | dds ra | tio                |     |
| Boening et al. <sup>21</sup>          | 1 of 185             | 24 of 3126    | 8-9        | 0.70 (0.09, 5.22)  |      |                 | •      |                    |     |
| Cladellas et al.22                    | 2 of 42              | 4 of 159      | 5.3        | 1.94 (0.34, 10.96) |      |                 |        | -0                 |     |
| Munoz <i>et al</i> . <sup>31</sup>    | 16 of 210            | 17 of 366     | 38-0       | 1.69 (0.84, 3.43)  |      |                 | +      |                    |     |
| Ranucci et al. <sup>34</sup>          | 6 of 401             | 12 of 401     | 39-2       | 0.49 (0.18, 1.33)  |      |                 | +      |                    |     |
| Zhang et al.41                        | 5 of 432             | 2 of 223      | 8.7        | 1.29 (0.25, 6.72)  |      |                 |        |                    |     |
| Total                                 | 30 of 1270           | 59 of 4275    | 100-0      | 1.11 (0.68, 1.82)  |      |                 | +      | •                  |     |
| Heterogeneity: $\chi^2 = \frac{1}{2}$ |                      |               |            |                    | 0-01 | 0-1             | 1      | 10                 | 100 |
| Test for overall effec                | $\pi: Z = 0.43, P =$ | 0.01          |            |                    |      | Favours anaemia |        | Favours no anaemia |     |

Fig. 5 Forest plot of myocardial infarction, according to author-defined anaemia. Sizes of markers indicate weight for each study according to sample size. A Mantel-Haenszel fixed-effect model was used for meta-analysis. Odds ratios are shown with 95 per cent c.i.

|                                      | Infe                                 | ction                                             |            |                   |                 |                 |      |
|--------------------------------------|--------------------------------------|---------------------------------------------------|------------|-------------------|-----------------|-----------------|------|
| Reference                            | Anaemia                              | No anaemia                                        | Weight (%) | Odds ratio        | C               | dds ratio       |      |
| Bell et al. <sup>20</sup>            | 208 of 6143                          | 338 of 30196                                      | 10-0       | 3.10 (2.60, 3.69) |                 | -0-             |      |
| Boening et al. <sup>21</sup>         | 30 of 185                            | 206 of 3126                                       | 9-4        | 2.74 (1.81, 4.16) |                 |                 |      |
| Cladellas <i>et al.</i> 22           | 10 of 42                             | 16 of 159                                         | 7.7        | 2.79 (1.16, 6.72) |                 |                 |      |
| De Santo <i>et al.</i> 23            | 5 of 320                             | 12 of 727                                         | 7.0        | 0.95 (0.33, 2.71) |                 |                 |      |
| Greenky et al. <sup>25</sup>         | 130 of 2991                          | 259 of 12231                                      | 9-9        | 2.10 (1.69, 2.60) |                 | -0-             |      |
| Melis <i>et al.</i> <sup>30</sup>    | 46 of 197                            | 49 of 216                                         | 9-3        | 1.04 (0.66, 1.64) |                 | <b>—</b> —      |      |
| Munoz <i>et al.</i> <sup>31</sup>    | 20 of 210                            | 27 of 366                                         | 8-8        | 1.32 (0.72, 2.42) |                 | <b></b>         |      |
| Musallam <i>et al.</i> <sup>32</sup> | 4592 of 69229                        | 3214 of 158196                                    | 10-1       | 3.43 (3.27, 3.59) |                 | •               |      |
| Ranucci et al. <sup>34</sup>         | 26 of 401                            | 14 of 401                                         | 8.6        | 1.92 (0.99, 3.73) |                 |                 |      |
| Saager et al. <sup>35</sup>          | 7337 of 119298                       | 7194 of 119298                                    | 10-1       | 1.02 (0.99, 1.06) |                 | Ļ               |      |
| Shirzad et al. <sup>37</sup>         | 21 of 650                            | 47 of 3782                                        | 9-1        | 2.65 (1.58, 4.47) |                 | _ <b></b>       |      |
| Total                                | 12425 of 199666                      | 11376 of 328698                                   | 100-0      | 1.93 (1.17, 3.18) |                 | •               |      |
| Heterogeneity: τ <sup>2</sup> =      | 0·64; χ <sup>2</sup> = 1819·28, 10   | ) d.f., <i>P</i> < 0·001; <i>I</i> <sup>2</sup> = | 99%        |                   | 0-1             | 1 10            | 10(  |
| Test for overall effe                | ct: <i>Z</i> = 2⋅57, <i>P</i> = 0⋅01 |                                                   |            | 0-01              |                 |                 | 100  |
|                                      |                                      |                                                   |            |                   | Favours anaemia | Favours no anae | n na |

Fig. 6 Forest plot of risk of infection in anaemic *versus* non-anaemic patients. Sizes of markers indicate weight for each study according to sample size. A Mantel-Haenszel random-effects model was used for meta-analysis. Odds ratios are shown with 95 per cent c.i.



# BJA

British Journal of Anaesthesia, 123 (2): 161-169 (2019)

doi: 10.1016/j.bja.2019.04.058 Advance Access Publication Date: 19 June 2019 Clinical Practice

### Association of preoperative anaemia with cardiopulmonary exercise capacity and postoperative outcomes in noncardiac surgery: a substudy of the Measurement of Exercise Tolerance before Surgery (METS) Study

J. Bartoszko<sup>1,2</sup>, K. E. Thorpe<sup>3,4</sup>, A. Laupacis<sup>2,5,6,7</sup>, D. N. Wijeysundera<sup>1,2,5,8,\*</sup> on behalf of the METS Study Investigators

<sup>1</sup>Department of Anesthesia, University of Toronto, Toronto, ON, Canada, <sup>2</sup>Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada, <sup>3</sup>Applied Health Research Centre, St. Michael's Hospital, Toronto, ON, Canada, <sup>4</sup>Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada, <sup>5</sup>Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada, <sup>6</sup>Department of Medicine, St. Michael's Hospital, Toronto, ON, Canada, <sup>7</sup>Department of Medicine, University of Toronto, Toronto, ON, Canada and <sup>8</sup>Department of Anesthesia, St. Michael's Hospital, Toronto, ON, Canada

\*Corresponding author. E-mail: d.wijeysundera@utoronto.ca



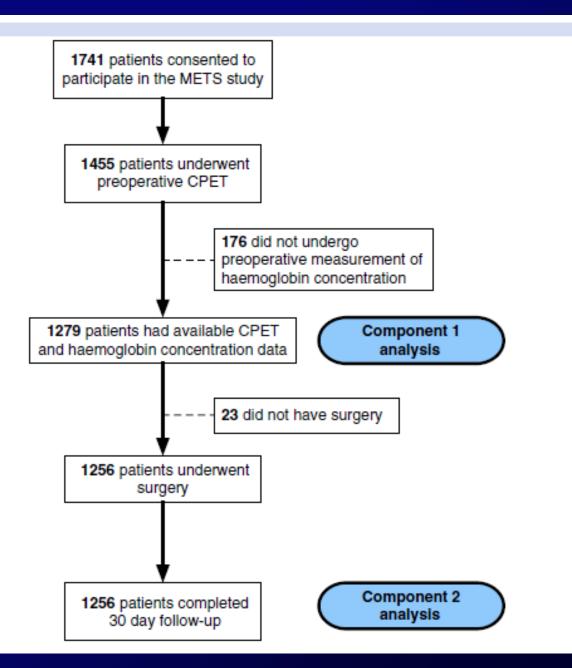





Table 1 Characteristics of study cohort, stratified by WHO anaemia class. Means and standard deviations (30) or medians and interquartile ranges (IQR) shown for continuous data. Counts and proportions are shown for categorical data. Continuous data were compared between strata using either analysis of variance (ANOVA) or the Wilcoxon rank-sum test. Categorical data were compared using Fisher's exact test. AT, anaerobic threshold; eGFR, estimated glomerular filtration rate calculated using the CKD-Epi formula.<sup>16,27</sup>

| Variables                                                                   | Non-anaemic (n=1045) | Mild anaemia (n=177) | Moderate or severe<br>anaemia (n=57) | P-value |
|-----------------------------------------------------------------------------|----------------------|----------------------|--------------------------------------|---------|
| Haemoglobin concentration (g L <sup>-1</sup> ), mean (so)                   | 143.0 (11.4)         | 119.9 (5.7)          | 100.2 (9.0)                          | <0.001  |
| Age (yr), mean (range)                                                      | 64.1 (40-92)         | 65.7 (40-88)         | 64.3 (40-86)                         | 0.18    |
| BMI (kg m <sup>-2</sup> ), median (IQR)                                     | 28.0 (25.0, 31.8)    | 27.5 (23.5, 31.4)    | 25.5 (22.1 29.6)                     | 0.0002  |
| VO <sub>2</sub> peak (ml kg <sup>-1</sup> min <sup>-1</sup> ), median (IQR) | 19.0 (15.0, 23.0)    | 16.1 (13.6, 20.0)    | 14.7 (12.0, 18.9)                    | < 0.001 |
| AT (ml kg <sup>-1</sup> min <sup>-1</sup> ), median (IQR)                   | 12.0 (10.0, 15.0)    | 11.1 (9.2, 14.0)     | 10.6 (8.8, 12.0)                     | < 0.001 |
| eGFR (ml min <sup>-1</sup> 1.73 m <sup>-2</sup> )                           |                      |                      |                                      |         |
| ≥60                                                                         | 876 (83.8%)          | 138 (79.0%)          | 36 (63.2%)                           | < 0.001 |
| 30-59                                                                       | 146 (14.0%)          | 27 (15.3%)           | 8 (14.0%)                            |         |
| <30 or dialysis                                                             | 23 (2.2%)            | 12 (6.8%)            | 13 (22.8%)                           |         |
| Comorbidities                                                               |                      |                      |                                      |         |
| Coronary artery disease                                                     | 72 (6.9%)            | 30 (17.0%)           | 10 (17.5%)                           | < 0.001 |
| Heart failure                                                               | 83 (7.9%)            | 33 (18.6%)           | 11 (19.3%)                           | < 0.001 |
| Diabetes mellitus                                                           | 193 (18.5%)          | 36 (20.3%)           | 10 (17.5%)                           | 0.82    |
| Obstructive lung disease                                                    | 119 (11.4%)          | 25 (14.1%)           | 9 (15.8%)                            | 0.39    |
| Preoperative chemotherapy                                                   | 62 (5.9%)            | 34 (19.2%)           | 11 (19.3%)                           | < 0.001 |
| Arthritis                                                                   | 381 (36.5%)          | 57 (32.2%)           | 14 (24.6%)                           | 0.21    |

Table 2 Adjusted multivariate modelling (prediction of VO<sub>2</sub> peak and AT simultaneously). AT, anaerobic threshold; VO<sub>2</sub> peak, peak oxygen consumption; CAD, coronary artery disease; eGFR, estimated glomenular filtration rate (calculated using CKD-Epi fomula<sup>18</sup>); CKD-Epi, Chronic Kidney Disease Epidemiology Collaboration.

| Variable                                          | Proportion of<br>variance<br>explained | P-value |
|---------------------------------------------------|----------------------------------------|---------|
| Age                                               | 0.034                                  | < 0.001 |
| Female sex                                        | 0.093                                  | < 0.001 |
| Haemoglobin<br>concentration (g L <sup>-1</sup> ) | 0.038                                  | <0.001  |
| Coronary artery disease                           | 0.004                                  | 0.11    |
| Heart failure                                     | 0.003                                  | 0.14    |
| Diabetes mellitus                                 | 0.023                                  | < 0.001 |
| eGFR (ml min <sup>-1</sup> 1.73 m <sup>-2</sup> ) | 0.002                                  | 0.29    |
| Obstructive lung disease                          | 0.004                                  | 0.11    |
| Preoperative chemotherapy                         | 0.006                                  | 0.03    |
| Arthritis                                         | 0.003                                  | 0.18    |



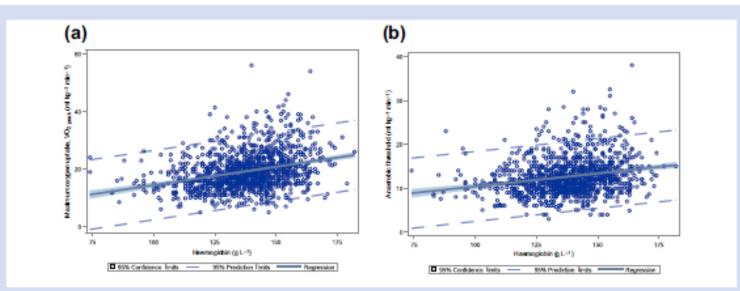



Fig 2. Fit plots for unadjusted linear regression modelling of haemoglobin concentration with VO<sub>2</sub> peak and anaerobic threshold (AT). (a) Association between haemoglobin concentration and VO<sub>2</sub> peak. (b) Association between haemoglobin concentration and anaerobic threshold.



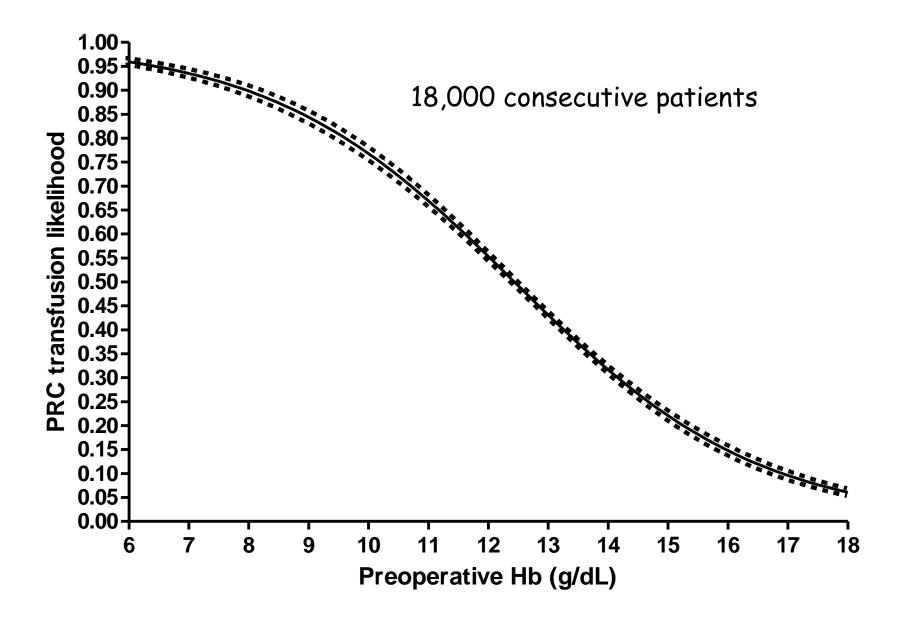
Table 4 Multivariable logistic regression models predicting moderate and severe complications, with separate model results for VO<sub>2</sub> peak and anaerobic threshold; CI, confidence interval; VO<sub>2</sub> peak, peak oxygen consumption.

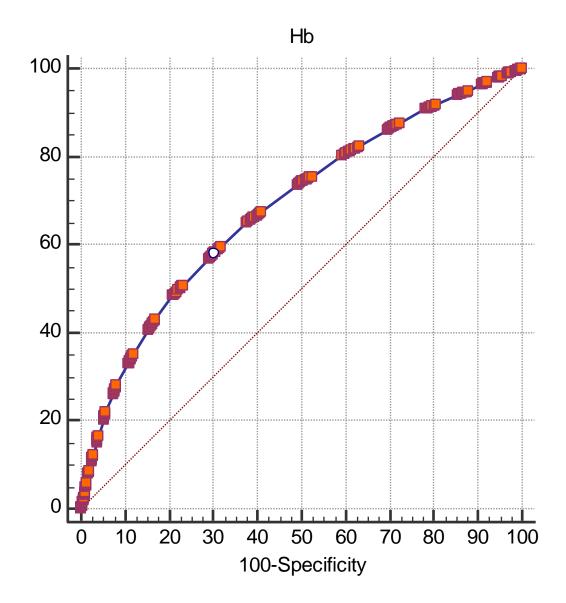
| dependent variable                                            | Odds ratio              | 95% CI              | P-value                         |
|---------------------------------------------------------------|-------------------------|---------------------|---------------------------------|
| djusted association between haemoglobin concentration a       | nd moderate or severe o | omplications—with a | djustment for VO <sub>2</sub> p |
| Age (per 10 yr)                                               | 1.04                    | 0.88-1.24           | 0.62                            |
| Female sex                                                    | 0.53                    | 0.35-0.79           | 0.002                           |
| Haemoglobin concentration (per 10 g L <sup>-1</sup> )         | 0.86                    | 0.77-0.96           | 0.007                           |
| VO <sub>2</sub> peak (ml kg <sup>-1</sup> min <sup>-1</sup> ) | 0.96                    | 0.93-0.99           | 0.01                            |
| Surgical procedure type                                       |                         |                     |                                 |
| Intra- or retroperitoneal or intrathoracic or vascular        | Reference               |                     |                                 |
| Urology or gynaecology                                        | 0.33                    | 0.22-0.49           | 0.001                           |
| Orthopaedic                                                   | 0.12                    | 0.06-0.22           | <0.001                          |
| Others                                                        | 0.35                    | 0.16 - 0.68         |                                 |

| - Be (bes to ).)                                             |           | the state in and an | and access |   |
|--------------------------------------------------------------|-----------|---------------------|------------|---|
| Female sex                                                   | 0.58      | 0.38-0.87           | 0.009      |   |
| Haemoglobin concentration (per 10 g L <sup>-1</sup> )        | 0.86      | 0.77-0.97           | 0.01       |   |
| Anaerobic threshold (ml kg <sup>-1</sup> min <sup>-1</sup> ) | 0.98      | 0.93-1.02           | 0.35       |   |
| Surgical procedure type                                      |           |                     |            |   |
| Intra- or retroperitoneal or intrathoracic or vascular       | Reference |                     |            |   |
| Urology or gynaecology                                       | 0.31      | 0.20-0.47           | 0.001      |   |
| Orthopaedic                                                  | 0.12      | 0.05-0.23           | <0.001     |   |
| Others                                                       | 0.32      | 0.14-0.64           |            |   |
|                                                              |           |                     |            | - |

c-Statistic=0.74; Hosmer-Lemeshow goodness-of-fit test, P=0.21; interaction term between haemoglobin concentration and VO<sub>2</sub> peak was not statistically significant (P=0.12).

c-Statistic=0.73; Hosmer-Lemeshow goodness-of-fit test, P=0.95; interaction term between haemoglobin concentration and AT was not statistically significant (P=0.09).


### PBM PROJECT AT IRCCS Policlinico San Donato PREOPERATIVE IRON DEFICIENCY CORRECTION


Table 4 Five-variable risk model for transfusions and TRACK score development

| Factor                                    | Coefficient B | Pvalue | Odds ratio | TRACK score points<br>(range for total: 0–32) |
|-------------------------------------------|---------------|--------|------------|-----------------------------------------------|
| Age > 67 years                            | 0.643         | 0-001  | 1-903      | 6                                             |
| Weight < 60 kg (female) or < 85 kg (male) | 0.240         | 0-001  | 1.272      | 2                                             |
| Gender - female                           | 0.359         | 0-001  | 1-418      | 4                                             |
| Complex surgery                           | 0.724         | 0-001  | 2.063      | 7                                             |
| Haematocrit (continuous)                  | -0-109        | 0.001  | 0.895      | 1 point per each value (%)                    |
| Constant                                  | 3-484         | 0-001  | 32.600     | Below 40% (max 13 points                      |

TRACK, Transfusion Risk And Clinical Knowledge.







#### ROC curve

| Variable<br>Classification variable | Hb Tras        |
|-------------------------------------|----------------|
| Sample size                         | 17861          |
| Positive group <sup>a</sup>         | 7850 (43,95%)  |
| Negative group <sup>b</sup>         | 10011 (56,05%) |
| <sup>a</sup> Tras = 1               |                |
| <sup>b</sup> Tras = 0               |                |
| Disease prevalence (%               | 44,0           |

### Area under the ROC curve (AUC)

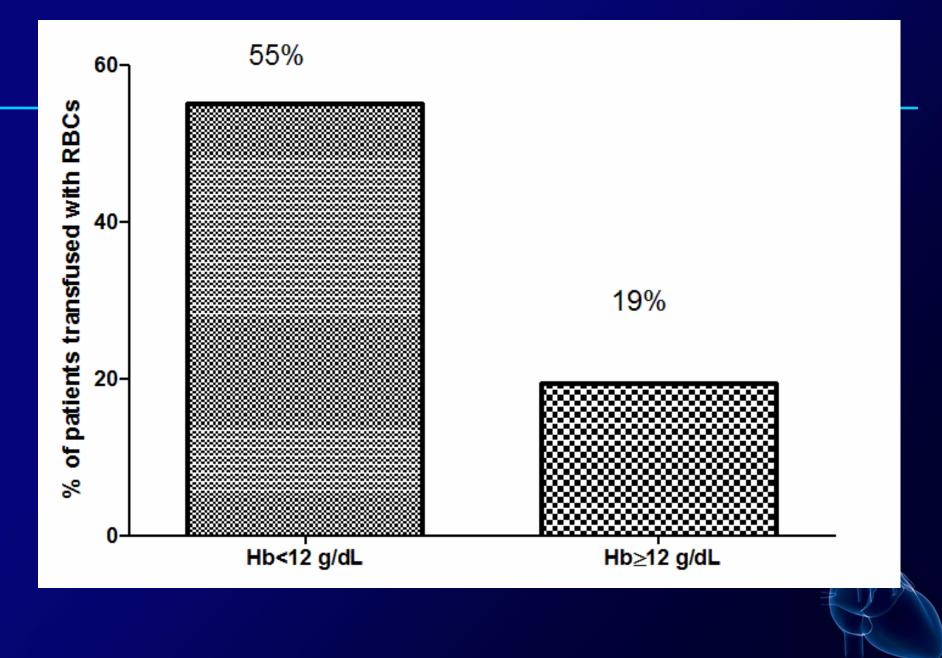
| Area under the ROC curve (AUC)       | 0,686          |
|--------------------------------------|----------------|
| Standard Error <sup>a</sup>          | 0,00401        |
| 95% Confidence interval <sup>b</sup> | 0,679 to 0,692 |
| z statistic                          | 46,298         |
| Significance level P (Area=0.5)      | <0,0001        |

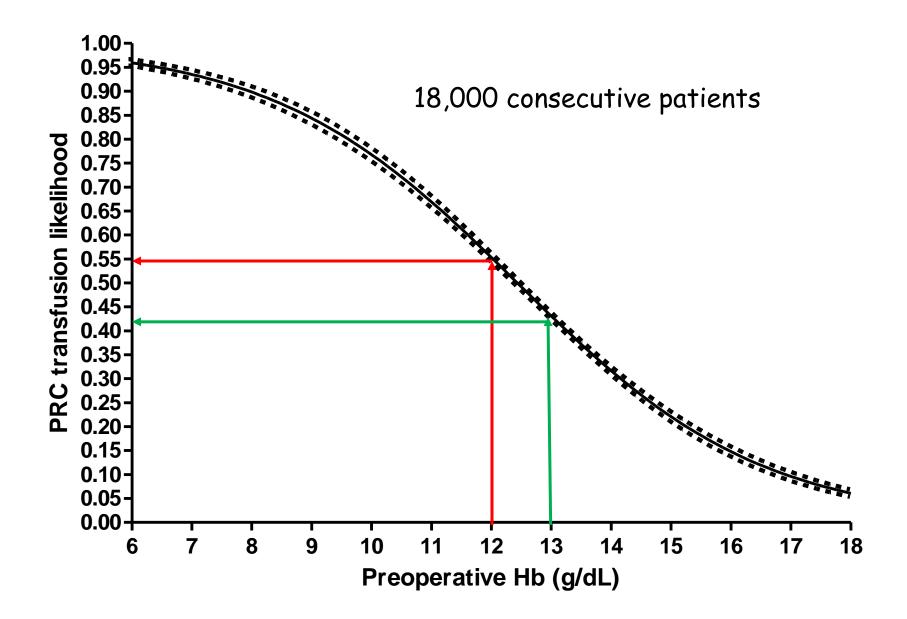
<sup>a</sup> DeLong et al., 1988 <sup>b</sup> Binomial exact

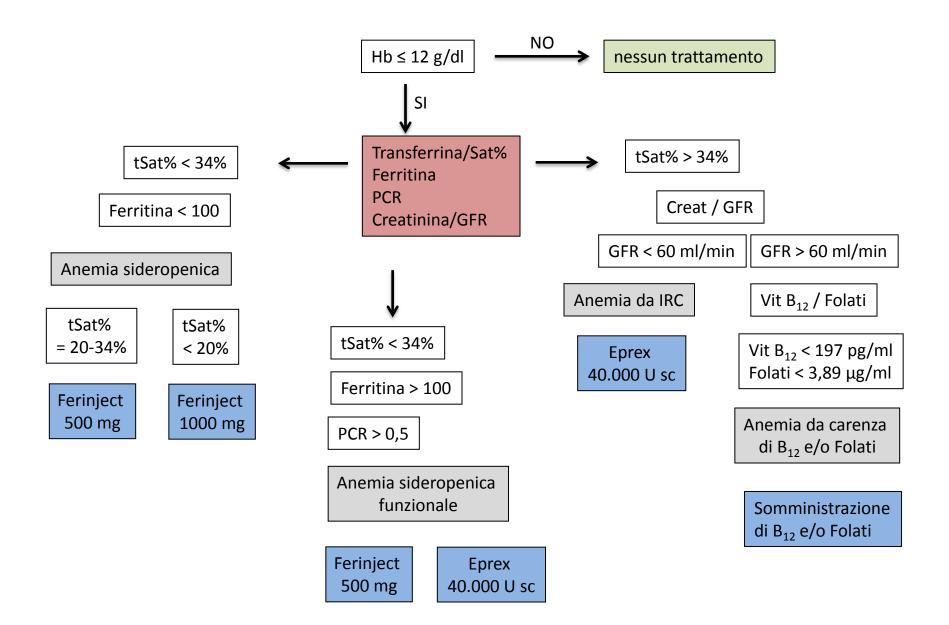
#### Youden index

| Youden index J       | 0,2785 |
|----------------------|--------|
| Associated criterion | ≤12,77 |
| Sensitivity          | 57,73  |
| Specificity          | 70,11  |

### **Optimal criterion**


| Optimal criterion <sup>a</sup> | ≤12,33 |
|--------------------------------|--------|
| Sensitivity                    | 48,50  |
| Specificity                    | 79,01  |


a Taking into account disease prevalence (44,0%) and estimated costs:


cost False Positive: 1; cost False Negative: 1 cost True Positive: 0; cost True Negative: 0

# <12 g/dL = 22% patient population

220 patients/year







Al ricovero verranno eseguiti esami di controllo per verificare l'efficacia del trattamento

# HYPOTHESIS

If we can increase the preoperative Hb value by 1 mg/dL, the expected transfusion rate will decrease by 13%

This accounts for 130 pts/year. Given a mean RBC transfusion of 2 units, a blood saving of 260 Units

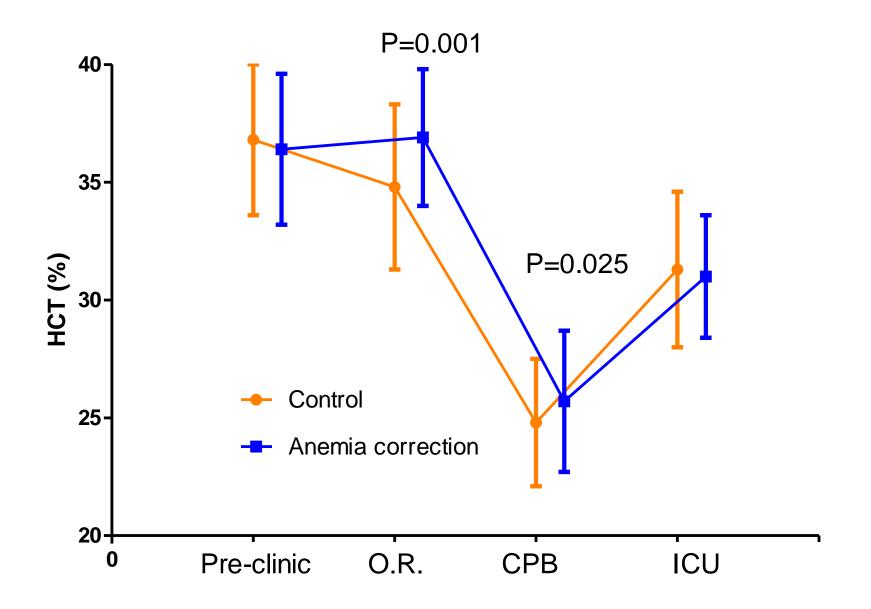
Total saving accounts to 65,000 Euros/yr Much more considering the additional costs of transfusions (about 100,000 Euros/year)

## Anemia correction

• Ferrocarboxymalthose 700 mg ± 302 (in 57 pts)

• Erithropoyetin 40.000 U (in 27 pts)

## ONGOING STUDY


Sixty-one patients received anemia correction

Control patients were 520 (rough data)

After propensity matching, a control group of 174 was selected

| 61 | 174  |
|----|------|
| 01 | 1/ 7 |

| VARIABLE          | Anemia<br>correction | Control   | P value |
|-------------------|----------------------|-----------|---------|
| Age               | 72.1±11.4            | 73.6±5.0  | 0.314   |
| Gender male       | 31.1%                | 26.4%     | 0.479   |
| Weight            | 64.5±14.2            | 66.0±11.8 | 0.420   |
| Ejection fraction | 58.4±7.8             | 57.0±8.4  | 0.283   |
| Serum creatinine  | 1.2±1.8              | 1.2±1.3   | 0.845   |
| Combined surgery  | 41%                  | 39%       | 0.793   |
| EuroSCORE II      | 1.7%                 | 1.6%      | 0.999   |
| Diabetes          | 21.3%                | 21.8%     | 0.931   |
| COPD              | 1.7%                 | 1.6%      | 0.985   |



### OUTCOME

| VARIABLE                  | Anemia correction | Control   | P value |
|---------------------------|-------------------|-----------|---------|
| Transfusion RBC           | 55.7%             | 70.7%     | 0.033   |
| Transfusion PLT           | 8.2%              | 10.3%     | 0.627   |
| Bleeding                  | 302±286           | 430±324   | 0.007   |
| LOS                       | 8.2%              | 17.2%     | 0.088   |
| Stroke                    | 1.6%              | 1.7%      | 0.99    |
| F.A.                      | 26.6%             | 28.7%     | 0.533   |
| SEPSI                     | 1.6%              | 2.3%      | 0.789   |
| Mechanical<br>Ventilation | 16.5±13.6         | 33.8±87   | 0.01    |
| Days in ICU               | 2.60±3.82         | 3.91±8.7  | 0.065   |
| Hospitalization           | 9.4±4.8           | 11.2±9.0  | 0.034   |
| Peak Creatinina           | 1.10±1.0          | 1.27±1.30 | 0.372   |
| Mortality                 | 1.6%              | 3.0%      | 0.415   |

### TOO LITTLE PATIENT POPULATION AT PRESENT

HOWEVER, A POSITIVE TREND ON OUTCOMES AND SIGNIFICANT REDUCTION IN RBC TRANSFUSIONS

### A LARGE MULTICENTER TRIAL IN UK IS ONGOING

Can J Anesth/J Can Anesth (2019) 66:716-731 https://doi.org/10.1007/s12630-019-01351-6



REVIEW ARTICLE/BRIEF REVIEW

Efficacy and safety of erythropoietin and iron therapy to reduce red blood cell transfusion in surgical patients: a systematic review and meta-analysis

Efficacité et innocuité d'un traitement d'érythropoïétine et de fer pour réduire la transfusion de culots sanguins chez les patients chirurgicaux: une revue systématique et méta-analyse

Tiffanie Kei, MHSc · Nikhil Mistry, MSc · Gerard Curley, MB, MSc, PhD · Katerina Pavenski, MD · Nadine Shehata, MD · Rosa Maria Tanzini, BSc (Pharm) · Marie-France Gauthier, PharmD, ACPR · Kevin Thorpe, MMath · Tom A. Schweizer, PhD · Sarah Ward, MD · C. David Mazer, MD · Gregory M. T. Hare, MD, PhD

Received: 24 July 2018/Revised: 19 December 2018/Accepted: 29 December 2018/Published online: 28 March 2019 © Canadian Anesthesiologists' Society 2019

T. Kei et al.

|                                              | ESA +                   |         | Iron       |         |                         | Risk Ratio        |        | Risk Ratio                                      |
|----------------------------------------------|-------------------------|---------|------------|---------|-------------------------|-------------------|--------|-------------------------------------------------|
| Study or Subgroup                            |                         |         | Events     | Total   | Weight                  | IV, Random, 95% C | l Year | IV, Random, 95% CI                              |
| 4.2.1 ESA + Oral Iron v                      | s. Oral Iro             | on      |            |         |                         |                   |        |                                                 |
| COPES 1993                                   | 53                      | 130     | 44         | 78      | 6.3%                    | 0.72 [0.54, 0.96] |        |                                                 |
| Faris 1996                                   | 25                      | 118     | 36         | 69      | 5.6%                    | 0.41 [0.27, 0.61] | 1996   |                                                 |
| de Andrade 1996                              | 23                      | 213     | 24         | 101     | 5.0%                    | 0.45 [0.27, 0.76] | 1996   |                                                 |
| leiss 1996                                   | 9                       | 17      | 4          | 10      | 3.3%                    | 1.32 [0.55, 3.20] | 1996   |                                                 |
| D'Ambra 1997                                 | 36                      | 119     | 25         | 56      | 5.7%                    | 0.68 [0.45, 1.01] | 1997   |                                                 |
| Sowade 1997                                  | 4                       | 36      | 19         | 36      | 2.9%                    | 0.21 [0.08, 0.56] | 1997   |                                                 |
| Qvist 1999                                   | 13                      | 38      | 23         | 43      | 5.0%                    | 0.64 [0.38, 1.08] | 1999   | +                                               |
| Feagan 2000                                  | 23                      | 123     | 35         | 78      | 5.5%                    | 0.42 [0.27, 0.65] | 2000   |                                                 |
| Podesta 2000                                 | 1                       | 30      | 26         | 30      | 1.1%                    | 0.04 [0.01, 0.27] | 2000   | ←                                               |
| arson 2001                                   | 0                       | 15      | 1          | 16      | 0.4%                    | 0.35 [0.02, 8.08] | 2001   | · · · · · ·                                     |
| Numig 2001                                   | 41                      | 124     | 28         | 51      | 6.0%                    | 0.60 [0.42, 0.86] | 2001   |                                                 |
| Scott 2002                                   | 19                      | 29      | 24         | 29      | 6.2%                    | 0.79 [0.58, 1.08] | 2002   | +                                               |
| Dousias 2003                                 | 0                       | 23      | 5          | 27      | 0.5%                    | 0.11 [0.01, 1.82] | 2003   | · · · · · · · · · · · · · · · · · · ·           |
| Christodoulakis 2005                         | 59                      | 136     | 36         | 68      | 6.3%                    | 0.82 [0.61, 1.10] | 2005   | +                                               |
| Neber 2005                                   | 56                      | 458     | 107        | 235     | 6.3%                    | 0.27 [0.20, 0.36] | 2005   |                                                 |
| Neltert 2015                                 | 51                      | 300     | 117        | 300     | 6.3%                    | 0.44 [0.33, 0.58] | 2015   |                                                 |
| Wu 2016                                      | 2                       | 30      | 6          | 32      | 1.6%                    | 0.36 [0.08, 1.63] | 2016   |                                                 |
| Subtotal (95% CI)                            |                         | 1939    |            | 1259    | 74.1%                   | 0.51 [0.40, 0.65] |        | •                                               |
| Total events                                 | 415                     |         | 560        |         |                         |                   |        |                                                 |
| Heterogeneity: Tau <sup>2</sup> = 0          | .15; Chi² =             | 65.02.  | df = 16 (i | P < 0.0 | 0001); l <sup>2</sup> = | 75%               |        |                                                 |
| Test for overall effect: Z                   | = 5.50 (P               | < 0.000 | 001)       |         |                         |                   |        |                                                 |
|                                              |                         |         |            |         |                         |                   |        |                                                 |
| 4.2.2 ESA + IV Iron vs.                      | IV Iron                 |         |            |         |                         |                   |        |                                                 |
| Kyo 1992                                     | 20                      | 40      | 12         | 16      | 5.6%                    | 0.67 [0.44, 1.01] |        |                                                 |
| Kettelhack 1998                              | 16                      | 48      | 15         | 54      | 4.7%                    | 1.20 [0.67, 2.16] |        |                                                 |
| Kosmadakis 2003                              | 10                      | 31      | 28         | 32      | 5.0%                    | 0.37 [0.22, 0.62] |        |                                                 |
| Bernabeu-Wittel 2016                         | 52                      | 100     | 53         | 103     | 6.4%                    | 1.01 [0.77, 1.32] | 2016   | +                                               |
| Jrena 2017                                   | 13                      | 48      | 13         | 52      | 4.3%                    | 1.08 [0.56, 2.10] | 2017   |                                                 |
| Subtotal (95% CI)                            |                         | 267     |            | 257     | 25.9%                   | 0.79 [0.54, 1.18] |        |                                                 |
| Total events                                 | 111                     |         | 121        |         |                         |                   |        |                                                 |
| Heterogeneity: Tau <sup>a</sup> = 0          |                         |         |            | = 0.00  | 6); I² = 729            | 6                 |        |                                                 |
|                                              | = 1.15 (P               | = 0.25) |            |         |                         |                   |        |                                                 |
| Test for overall effect: Z                   |                         | 2200    |            | 1516    | 100.0%                  | 0.57 [0.46, 0.71] |        | ◆                                               |
| Test for overall effect: Z<br>Fotal (95% CI) |                         | 2206    |            |         |                         |                   |        |                                                 |
|                                              | 526                     | 2206    | 681        |         |                         |                   |        |                                                 |
| Total (95% CI)                               |                         |         |            | P < 0.0 | 0001); l² =             | 78%               |        |                                                 |
| Total (95% CI)<br>Total events               | .17; Chi <sup>2</sup> = | 96.33,  | df = 21 (  | P < 0.0 | 0001); I² =             | 78%               |        | 0.05 0.2 1 5<br>Favours ESA + Iron Favours Iron |

Fig. 2 Forest plot showing the effect of erythropoiesis stimulating agents (ESA) and iron vs iron on number of patients transfused with red blood cells (RBCs) (primary outcome), stratified into subgroups by study interventions

|                                     | ESA + I                 |         | Iron      | -       |                             | Risk Ratio         |      | Risk Ratio                            |
|-------------------------------------|-------------------------|---------|-----------|---------|-----------------------------|--------------------|------|---------------------------------------|
| Study or Subgroup                   |                         |         | Events    | Total   | Weight                      | IV, Random, 95% CI | Year | IV, Random, 95% CI                    |
| 5.3.1 Low Dose ESA +                | Iron vs. Ir             | ron     |           |         |                             |                    |      |                                       |
| Kyo 1992                            | 20                      | 40      | 12        | 16      | 5.5%                        | 0.67 [0.44, 1.01]  | 1992 |                                       |
| Qvist 1999                          | 13                      | 38      | 23        | 43      | 4.9%                        | 0.64 [0.38, 1.08]  | 1999 |                                       |
| Feagan 2000                         | 18                      | 79      | 18        | 39      | 4.9%                        | 0.49 [0.29, 0.84]  | 2000 |                                       |
| Podesta 2000                        | 1                       | 30      | 26        | 30      | 1.0%                        | 0.04 [0.01, 0.27]  | 2000 | <u>← − − − </u>                       |
| Larson 2001                         | 0                       | 15      | 1         | 16      | 0.4%                        | 0.35 [0.02, 8.08]  | 2001 |                                       |
| Wurnig 2001                         | 41                      | 124     | 28        | 51      | 5.8%                        | 0.60 [0.42, 0.86]  | 2001 |                                       |
| Weltert 2015                        | 51                      | 300     | 117       | 300     | 6.1%                        | 0.44 [0.33, 0.58]  | 2015 | -                                     |
| Bernabeu-Wittel 2016                | 52                      | 100     | 53        | 103     | 6.2%                        | 1.01 [0.77, 1.32]  | 2016 | +                                     |
| Wu 2016                             | 2                       | 30      | 6         | 32      | 1.5%                        | 0.36 [0.08, 1.63]  | 2016 |                                       |
| Urena 2017                          | 13                      | 48      | 13        | 52      | 4.2%                        | 1.08 [0.56, 2.10]  | 2017 | _ <b>_</b>                            |
| Subtotal (95% CI)                   |                         | 804     |           | 682     | 40.6%                       | 0.60 [0.44, 0.82]  |      | •                                     |
| Total events                        | 211                     |         | 297       |         |                             |                    |      |                                       |
| Heterogeneity: Tau <sup>2</sup> = 0 | .14; Chi <sup>2</sup> = | 30.52,  | df = 9 (P | = 0.00  | 04);   <sup>2</sup> = 7     | 1%                 |      |                                       |
| Test for overall effect: Z          | = 3.20 (P               | = 0.001 | 0         |         |                             |                    |      |                                       |
|                                     |                         |         |           |         |                             |                    |      |                                       |
| 5.3.2 High Dose ESA +               | lron vs. I              | ron     |           |         |                             |                    |      |                                       |
| COPES 1993                          | 53                      | 130     | 44        | 78      | 6.1%                        | 0.72 [0.54, 0.96]  | 1993 |                                       |
| Faris 1996                          | 25                      | 118     | 36        | 69      | 5.5%                        | 0.41 [0.27, 0.61]  | 1996 |                                       |
| Heiss 1996                          | 9                       | 17      | 4         | 10      | 3.2%                        | 1.32 [0.55, 3.20]  | 1996 | - <b>-</b>                            |
| de Andrade 1996                     | 23                      | 213     | 24        | 101     | 4.9%                        | 0.45 [0.27, 0.76]  | 1996 |                                       |
| D'Ambra 1997                        | 36                      | 119     | 25        | 56      | 5.6%                        | 0.68 [0.45, 1.01]  | 1997 |                                       |
| Sowade 1997                         | 4                       | 36      | 19        | 36      | 2.8%                        | 0.21 [0.08, 0.56]  | 1997 |                                       |
| Kettelhack 1998                     | 16                      | 48      | 15        | 54      | 4.5%                        | 1.20 [0.67, 2.16]  | 1998 | - <b>-</b>                            |
| Feagan 2000                         | 5                       | 44      | 17        | 39      | 3.1%                        | 0.26 [0.11, 0.64]  | 2000 |                                       |
| Scott 2002                          | 19                      | 29      | 24        | 29      | 6.0%                        | 0.79 [0.58, 1.08]  | 2002 |                                       |
| Dousias 2003                        | 0                       | 23      | 5         | 27      | 0.5%                        | 0.11 [0.01, 1.82]  | 2003 | · · · · · · · · · · · · · · · · · · · |
| Kosmadakis 2003                     | 10                      | 31      | 28        | 32      | 4.9%                        | 0.37 [0.22, 0.62]  | 2003 | _ <b>-</b> _                          |
| Weber 2005                          | 56                      | 458     | 107       | 235     | 6.2%                        | 0.27 [0.20, 0.36]  | 2005 | -                                     |
| Christodoulakis 2005                | 59                      | 136     | 36        | 68      | 6.1%                        | 0.82 [0.61, 1.10]  | 2005 |                                       |
| Subtotal (95% CI)                   |                         | 1402    |           | 834     | 59.4%                       | 0.54 [0.40, 0.73]  |      | ◆                                     |
| Total events                        | 315                     |         | 384       |         |                             |                    |      |                                       |
| Heterogeneity: Tau <sup>2</sup> = 0 | .22; Chi <sup>2</sup> = | 64.54,  | df = 12 ( | P < 0.0 | 0001); l² =                 | 81%                |      |                                       |
| Test for overall effect: Z          | := 4.03 (P              | < 0.000 | 11)       |         |                             |                    |      |                                       |
| Total (95% CI)                      |                         | 2206    |           | 1516    | 100.0%                      | 0.56 [0.45, 0.70]  |      | •                                     |
| Total events                        | 526                     |         | 681       |         |                             |                    |      |                                       |
| Heterogeneity: Tau <sup>2</sup> = 0 |                         | 97.56   |           | P < 0.0 | 0001): I <sup>z</sup> =     | 77%                |      |                                       |
| Test for overall effect: Z          |                         |         |           |         |                             |                    |      | 0.01 0.1 1 10                         |
| Test for subgroup differ            |                         |         |           | P = 0.5 | <ol> <li>ii = 0%</li> </ol> |                    |      | Favours ESA + Iron Favours Iron       |

Fig. 3 Forest plot showing the effect of erythropoiesis stimulating agents (ESA) and iron vs iron on number of patients transfused with red blood cells (RBCs) (primary outcome), stratified by low dose ( $\leq$  80,000 IU) vs high dose ESA (> 80,000 IU)



T. Kei et al.

| 4.1.1 Orthopedic Surgery         COPES 1993       53       130       44       78       7.5%       0.72 [0.54, 0.96]       1993         Faris 1996       23       213       24       101       6.2%       0.41 [0.27, 0.61]       1996         Geagan 2000       23       123       35       78       6.7%       0.42 [0.27, 0.65]       2000         Weber 2005       56       458       107       235       7.6%       0.42 [0.27, 0.56]       2000         Wu 2016       52       100       53       103       7.6%       0.42 [0.27, 0.56]       2005         Wu 2016       52       100       53       103       7.6%       0.47 [0.02, 0.36]       2000         Wu 2016       52       100       53       103       7.6%       0.49 [0.32, 0.76]       1072         Total events       234       305       806       44.5%       0.49 [0.32, 0.76]       103       7.6%         Hetorogeneity: Tau <sup>2</sup> = 0.28; Chi <sup>4</sup> = 52.73, df = 6 (P < 0.00001); P = 89%       128       108 [0.56, 1.01]       1997         Swade 1997       4       36       19       36       3.8%       0.21 [0.08, 0.56]       1997         D'Ambra 1997       36       117 <th></th> <th>ESA +</th> <th>Iron</th> <th>Iron</th> <th></th> <th></th> <th>Risk Ratio</th> <th></th> <th>Risk Ratio</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | ESA +       | Iron    | Iron        |        |                                      | Risk Ratio         |      | Risk Ratio                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|---------|-------------|--------|--------------------------------------|--------------------|------|--------------------------------------------|
| COPES 193       53       130       44       78       7.5%       0.72 [0.54, 0.96]       1993         Faris 1996       25       118       36       69       6.8%       0.41 [0.27, 0.61]       1996         Feagan 2000       23       123       35       78       6.7%       0.42 [0.27, 0.65]       2000         Weber 2005       56       458       107       235       7.6%       0.27 [0.20, 0.36]       2005         Subtotal (95% CI)       1172       696       44.5%       0.49 [0.32, 0.76]       2016         Subtotal (95% CI)       1172       696       44.5%       0.49 [0.32, 0.76]       103         Total events       234       305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Study or Subgroup                   | Events      | Total   | Events      | Total  | Weight                               | IV, Random, 95% CI | Year | IV, Random, 95% CI                         |
| Faris 1996 25 118 36 69 6.8% 0.41 [0.27, 0.61] 1996<br>tie Andrade 1996 23 213 24 101 6.2% 0.45 [0.27, 0.65] 1996<br>Freagan 2000 23 123 35 78 6.7% 0.42 [0.27, 0.65] 1996<br>Weber 2005 56 458 107 235 7.6% 0.27 [0.20, 0.36] 2005<br>Wu 2016 2 30 6 32 2.1% 0.36 [0.08, 1.63] 2016<br>Subtotal (95% CI) 1172 696 44.5% 0.49 [0.32, 0.76]<br>Total events 234 305<br>Heterogeneity: Tau <sup>2</sup> 0.28; CHi <sup>2</sup> 52 73, df = 6 ( $P < 0.00001$ ); $P = 89%$<br>Test for overall effect: Z = 3.18 ( $P = 0.001$ )<br>4.1.2 Cardiac Surgery<br>Kyo 1992 20 40 12 16 6.8% 0.67 [0.44, 1.01] 1992<br>Sowade 1997 4 36 19 36 3.8% 0.21 [0.08, 0.56] 1997<br>Podesta 2000 1 30 26 30 1.5% 0.04 [0.01, 0.27] 2000<br>Welter 2017 13 46 13 52 5.4% 10.80 [0.56, 2.10] 2015<br>Subtotal (95% CI) 573 490 31.8% 0.51 [0.32, 0.79]<br>Total events 125 212<br>Heterogeneity: Tau <sup>2</sup> 0.28; CHi <sup>2</sup> F3 2 ( $P = 0.002$ ); $P = 74\%$<br>Test for overall effect: Z = 3.02 ( $P = 0.003$ )<br>4.1.3 Colorectal Cancer Surgery<br>Heiss 1996 9 17 4 10 4.2% 1.32 [0.55, 3.20] 1996<br>Christodoulakis 2005 59 136 36 68 7.5% 0.42 [0.61, 1.10] 2005<br>Subtotal (95% CI) 239 175 23.7% 0.86 [0.67, 1.12]<br>Total events 16 48 15 54 0.2% 0.48 [0.61, 1.10] 2005<br>Subtotal (95% CI) 239 175 23.7% 0.86 [0.67, 1.12]<br>Total events 97 78<br>Heterogeneity: Tau <sup>2</sup> = 0.01; CHi <sup>2</sup> = 13.49, df = 3 ( $P = 0.32$ ); $P = 14\%$<br>Test for overall effect: Z = 1.09 ( $P = 0.27$ )<br>Total (95% CI) 1984 1361 100.9% 0.58 [0.45, 0.74]                                                                                                                                                                               | 4.1.1 Orthopedic Surge              | ery         |         |             |        |                                      |                    |      |                                            |
| the Andrade 1996 23 213 24 101 6.2% 0.45 [0.27, 0.76] 1996<br>Feagan 2000 23 123 35 78 6.7% 0.42 [0.27, 0.65] 2000<br>Weber 2005 56 458 107 235 7.6% 0.27 [0.20, 0.36] 2005<br>Weber 2005 56 458 107 235 7.6% 0.27 [0.20, 0.36] 2005<br>Weber 2016 2 30 6 32 2.1% 0.36 [0.08, 1.63] 2016<br>Bernabeu-Wittel 2016 52 100 53 103 7.6% 1.01 [0.77, 1.32] 2016<br>Subtotal (95% CI) 1172 696 44.5% 0.49 [0.32, 0.76]<br>Total events 234 305<br>Heterogeneity: Tau <sup>2</sup> = 0.28; Ch <sup>2</sup> = 52.73, df = 6 (P < 0.00001); P = 89%<br>Test for overall effect: Z = 3.18 (P = 0.001)<br>4.1.2 Cardiac Surgery<br>Kyo 1992 20 40 12 16 6.8% 0.67 [0.44, 1.01] 1992<br>Sowade 1997 36 119 25 56 6.9% 0.68 [0.45, 1.01] 1997<br>Podesta 2000 1 30 26 30 1.5% 0.04 [0.01, 0.27] 2000<br>Weltert 2015 51 300 117 300 7.5% 0.44 [0.33, 0.58] 2015<br>Unera 2017 13 48 13 52 5.4% 1.08 [0.56, 2.10] 2017<br>Subtotal (95% CI) 573 490 31.8% 0.51 [0.32, 0.79]<br>Total events 125 212<br>Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); P = 74%<br>Test for overall effect: Z = 3.02 (P = 0.003)<br>4.1.3 Colorectal Cancer Surgery<br>Heiss 1996 9 17 4 10 4.2% 1.32 [0.55, 3.20] 1996<br>Christodoulakis 2005 59 136 36 687 7.5% 0.82 [0.61, 1.10] 2005<br>Subtotal (95% CI) 239 175 23.7% 0.86 [0.67, 1.12]<br>Total events 15 5 2.12<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 19.34, df = 5 (P = 0.32); P = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total events 97 78<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total (95% CI) 1984 1361 100.9% 0.58 [0.45, 0.74] | COPES 1993                          | 53          | 130     | 44          | 78     | 7.5%                                 | 0.72 [0.54, 0.96]  | 1993 |                                            |
| Feagan 2000       23       123       35       78 $6.7\%$ $0.42 [0.27, 0.65]$ 2000         Weber 2005       56       458       107       235       7.6% $0.27 [0.20, 0.36]$ 2005         Wu 2016       2       30       6       32       2.1% $0.36 [0.08, 1.63]$ 2016         Subtotal (95% CI)       1172       696       44.5% $0.49 [0.32, 0.76]$ 2016         Feterogeneity: Tau <sup>2</sup> = 0.28; Chi <sup>2</sup> = 52.73, df = 6 (P < $0.00001$ ); P = 89%       Test for overall effect: Z = 3.18 (P = $0.001$ )         4.1.2 Cardiac Surgery       Kyo 1992       20       40       12       16       6.8% $0.67 [0.44, 1.01]$ 1992         Sowade 1997       4       36       19       36       3.8%       0.21 [0.08, 0.56]       1997         Podesta 2000       1       30       26       30       1.5%       0.04 [0.01, 0.27]       2000         Weltert 2015       51       300       117       300       7.5%       0.44 [0.33, 0.58]       2015         Urena 2017       13       48       13       52       5.1%       1.08 [0.56, 2.10]       2017         Subtotal (95% CI)       573       490       31.8%       0.51 [0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Faris 1996                          | 25          | 118     | 36          | 69     | 6.8%                                 | 0.41 [0.27, 0.61]  | 1996 |                                            |
| Weber 2005       56       458       107       235       7.6%       0.27       [0.20, 0.36]       2005         Wu 2016       2       30       6       32       2.1%       0.36       [0.81, 163]       2016         Bernabeu-Wittel 2016       52       100       53       103       7.6%       1.01       [0.77, 1.32]       2016         Subtotal (95% CI)       1172       696       44.5%       0.49       [0.32, 0.76]       0.49       [0.32, 0.76]         Total events       234       305       108       7.6%       0.67       [0.44, 1.01]       1992         Sowade 1997       4       36       19       36       3.8%       0.21       [0.08, 0.56]       1997         Valuetar 2015       51       300       117       300       7.5%       0.44       [0.33, 0.58]       2015         Veletar 2015       51       300       117       300       7.5%       0.44       [0.33, 0.58]       2015         Urena 2017       13       48       13       52       5.4%       1.08       [0.56, 2.10]       2017         Subtotal (95% CI)       573       490       31.8%       0.51       [0.37, 2.6]       1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | de Andrade 1996                     | 23          | 213     | 24          | 101    | 6.2%                                 | 0.45 [0.27, 0.76]  | 1996 |                                            |
| Wu 2016       2       30       6       32       2.1%       0.36       0.0.8, 1.63       2016         Bernabeu-Wittel 2016       52       100       53       103       7.6%       1.01       [0.77, 1.32]       2016         Subtotal (95% CI)       1172       696       44.5%       0.49       [0.32, 0.76]       Total events       234       305         Heterogeneity: Tau <sup>2</sup> = 0.28; Ch <sup>2</sup> = 52.73, df = 6 (P < 0.00001); P = 89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feagan 2000                         | 23          | 123     | 35          | 78     | 6.7%                                 | 0.42 [0.27, 0.65]  | 2000 |                                            |
| Bernabeu-Wittel 2016 52 100 53 103 7.6% 1.01 [0.77, 1.32] 2016<br>Subtotal (95% CI) 1172 696 44.5% 0.49 [0.32, 0.76]<br>Total events 234 305<br>Heterogeneity: Tau <sup>2</sup> = 0.28; Ch <sup>2</sup> = 52.73, df = 6 (P < 0.00001); P = 89%<br>Test for overall effect: Z = 3.18 (P = 0.001)<br>4.1.2 Cardiac Surgery<br>Kyo 1992 20 40 12 16 6.8% 0.67 [0.44, 1.01] 1992<br>Sowade 1997 4 36 19 36 3.8% 0.21 [0.08, 0.56] 1997<br>D'Ambra 1997 36 119 25 56 6.9% 0.68 [0.45, 1.01] 1997<br>Podesta 2000 1 30 26 30 1.5% 0.04 [0.01, 0.27] 2000<br>Weltert 2015 51 300 117 300 7.5% 0.44 (1.03, 0.88] 2015<br>Urena 2017 13 48 13 52 5.4% 1.08 [0.56, 2.10] 2017<br>Subtotal (95% CI) 573 490 31.8% 0.51 [0.32, 0.79]<br>Total events 125 212<br>Heterogeneity: Tau <sup>2</sup> = 0.19; Ch <sup>2</sup> = 19.38, df = 5 (P = 0.002); P = 74%<br>Test for overall effect: Z = 3.02 (P = 0.003)<br>4.1.3 Colorectal Cancer Surgery<br>Heiss 1996 9 17 4 10 4.2% 1.32 [0.55, 3.20] 1996<br>Kettelhack 1998 16 48 15 54 5.8% 1.20 [0.67, 2.16] 1998<br>Qvist 1999 13 38 23 43 6.2% 0.64 [0.38, 1.08] 1999<br>Christodoulakis 2005 59 136 36 6 87.5% 0.82 [0.61, 1.10] 2005<br>Subtotal (95% CI) 239 175 23.7% 0.86 [0.67, 1.12]<br>Total events 97 78<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Ch <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total (95% CI) 1984 1361 100.0% 0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                  | Weber 2005                          | 56          | 458     | 107         | 235    | 7.6%                                 | 0.27 [0.20, 0.36]  | 2005 | <b>—</b>                                   |
| Subtotal (95% CI)       1172       696       44.5%       0.49 [0.32, 0.76]         Total events       234       305         Heterogeneity: Tau <sup>2</sup> = 0.28; Chi <sup>2</sup> = 52.73, df = 6 (P < 0.00001); P = 89%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wu 2016                             | 2           | 30      | 6           | 32     | 2.1%                                 | 0.36 [0.08, 1.63]  | 2016 |                                            |
| Total events 234 305<br>Heterogeneity: Tau <sup>2</sup> = 0.28; Chi <sup>2</sup> = 52.73, df = 6 (P < 0.00001);   <sup>2</sup> = 89%<br>Test for overall effect: Z = 3.18 (P = 0.001)<br><b>4.1.2 Cardiac Surgery</b><br>Kyo 1992 20 40 12 16 6.8% 0.67 [0.44, 1.01] 1992<br>Sowade 1997 4 36 19 36 3.8% 0.21 [0.08, 0.56] 1997<br>D'Ambra 1997 36 119 25 56 6.9% 0.68 [0.45, 1.01] 1997<br>Podesta 2000 1 30 26 30 1.5% 0.04 [0.01, 0.27] 2000<br>Weltert 2015 51 300 117 300 7.5% 0.44 [0.33, 0.58] 2015<br>Urena 2017 13 48 13 52 5.4% 1.08 [0.56, 2.10] 2017<br>Subtotal (95% CI) 573 490 31.8% 0.51 [0.32, 0.79]<br>Total events 125 212<br>Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002);   <sup>2</sup> = 74%<br>Test for overall effect: Z = 3.02 (P = 0.003)<br><b>4.1.3 Colorectal Cancer Surgery</b><br>Heiss 1996 9 17 4 10 4.2% 1.32 [0.55, 3.20] 1996<br>Kettelhack 1998 16 48 15 54 5.8% 1.20 [0.67, 2.16] 1998<br>Quist 1999 13 38 23 43 6.2% 0.64 [0.38, 1.08] 1999<br>Christodoulakis 2005 59 136 36 68 7.5% 0.82 [0.61, 1.10] 2005<br>Subtotal (95% CI) 239 175 23.7% 0.86 [0.67, 1.12]<br>Total events 97 78<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32);   <sup>2</sup> = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total (95% CI) 1984 1361 100.0% 0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                  | Bernabeu-Wittel 2016                | 52          | 100     | 53          | 103    | 7.6%                                 | 1.01 [0.77, 1.32]  | 2016 | - +                                        |
| Heterogeneity: Tau <sup>2</sup> = 0.28; Ch <sup>2</sup> = 52.73, df = 6 (P < 0.00001); P = 89%<br>Test for overall effect: Z = 3.18 (P = 0.001)<br>4.1.2 Cardiac Surgery<br>Kyo 1992 20 40 12 16 6.8% 0.67 [0.44, 1.01] 1992<br>Sowade 1997 4 36 19 36 3.8% 0.21 [0.08, 0.56] 1997<br>D'Ambra 1997 36 119 25 56 6.9% 0.68 [0.45, 1.01] 1997<br>Podesta 2000 1 30 26 30 1.5% 0.04 [0.01, 0.27] 2000<br>Weltert 2015 51 300 117 300 7.5% 0.44 [0.33, 0.58] 2015<br>Urena 2017 13 48 13 52 5.4% 1.08 [0.56, 2.10] 2017<br>Subtotal (95% Cl) 573 490 31.8% 0.51 [0.32, 0.79]<br>Total events 125 212<br>Heterogeneity: Tau <sup>2</sup> = 0.19; Ch <sup>2</sup> = 19.38, df = 5 (P = 0.002); P = 74%<br>Test for overall effect: Z = 3.02 (P = 0.003)<br>4.1.3 Colorectal Cancer Surgery<br>Heiss 1996 9 17 4 10 4.2% 1.32 [0.55, 3.20] 1996<br>Kettelhack 1998 16 48 15 54 5.8% 1.20 [0.67, 2.16] 1998<br>Qvist 1999 13 38 23 43 6.2% 0.64 [0.38, 1.08] 1999<br>Christodoulakis 2005 59 136 36 68 7.5% 0.82 [0.67, 1.12]<br>Total events 97 78<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Ch <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total (95% Cl) 1984 1361 100.0% 0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Subtotal (95% CI)                   |             | 1172    |             | 696    | 44.5%                                | 0.49 [0.32, 0.76]  |      | ◆                                          |
| Test for overall effect: $Z = 3.18 (P = 0.001)$<br>4.1.2 Cardiac Surgery<br>Kyo 1992 20 40 12 16 6.8% 0.67 [0.44, 1.01] 1992<br>Sowade 1997 4 36 19 36 3.8% 0.21 [0.08, 0.56] 1997<br>D'Ambra 1997 36 119 25 56 6.9% 0.68 [0.45, 1.01] 1997<br>Podesta 2000 1 30 26 30 1.5% 0.04 [0.01, 0.27] 2000<br>Weltert 2015 51 300 117 300 7.5% 0.44 [0.33, 0.58] 2015<br>Urena 2017 13 48 13 52 5.4% 1.08 [0.56, 2.10] 2017<br>Subtotal (95% CI) 573 490 31.8% 0.51 [0.32, 0.79]<br>Total events 125 212<br>Heterogeneity: Tau <sup>2</sup> = 0.19; Ch <sup>2</sup> = 19.38, df = 5 (P = 0.002); I <sup>2</sup> = 74%<br>Test for overall effect: Z = 3.02 (P = 0.003)<br>4.1.3 Colorectal Cancer Surgery<br>Heiss 1996 9 17 4 10 4.2% 1.32 [0.55, 3.20] 1996<br>Kettelhack 1998 16 48 15 54 5.8% 1.20 [0.67, 2.16] 1998<br>Qvist 1999 13 38 23 43 66 68 7.5% 0.82 [0.61, 1.10] 2005<br>Subtotal (95% CI) 239 175 23.7% 0.86 [0.67, 1.12]<br>Total events 97 78<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Ch <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total (95% CI) 1984 1361 100.0% 0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total events                        | 234         |         | 305         |        |                                      |                    |      |                                            |
| 4.1.2 Cardiac Surgery         Kyo 1992       20       40       12       16       6.8%       0.67 [0.44, 1.01]       1992         Sowade 1997       4       36       19       36       3.8%       0.21 [0.08, 0.56]       1997         Podesta 2000       1       30       26       30       1.5%       0.04 [0.01, 0.27]       2000         Weltert 2015       51       300       117       300       7.5%       0.44 [0.33, 0.58]       2015         Subtotal (95% CI)       573       490       31.8%       0.51 [0.32, 0.79]       2017         Total events       125       212       Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); l <sup>2</sup> = 74%       1.32 [0.55, 3.20]       1996         Ketelhack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Quist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% CI)       239       175       23.7%       0.86 [0.67, 1.12]       4       4         Total events       97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heterogeneity: Tau <sup>2</sup> = 0 | .28; Chi² = | 52.73,  | df = 6 (P   | < 0.00 | 001); I <sup>2</sup> = 8             | 89%                |      |                                            |
| Kyo 1992       20       40       12       16       6.8%       0.67 [0.44, 1.01]       1992         Sowade 1997       4       36       19       36       3.8%       0.21 [0.08, 0.56]       1997         D'Ambra 1997       36       119       25       56       6.9%       0.68 [0.45, 1.01]       1997         Podesta 2000       1       30       26       30       1.5%       0.04 [0.01, 0.27]       2000         Weltert 2015       51       300       117       300       7.5%       0.44 [0.33, 0.58]       2015         Jurena 2017       13       48       13       52       5.4%       1.08 [0.56, 2.10]       2017         Subtotal (95% CI)       573       490       31.8%       0.51 [0.32, 0.79]       704         Total events       125       212       Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); l <sup>2</sup> = 74%       1.32 [0.55, 3.20]       1996         Kettelhack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Quist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test for overall effect: Z          | = 3.18 (P   | = 0.001 | )           |        |                                      |                    |      |                                            |
| Sowade 1997       4       36       19       36       3.8%       0.21 [0.08, 0.56]       1997         D'Ambra 1997       36       119       25       56       6.9%       0.68 [0.45, 1.01]       1997         Podesta 2000       1       30       26       30       1.5%       0.04 [0.01, 0.27]       2000         Weltert 2015       51       300       117       300       7.5%       0.44 [0.33, 0.58]       2015         Urena 2017       13       48       13       52       5.4%       1.08 [0.56, 2.10]       2017         Subtotal (95% CI)       573       490       31.8%       0.51 [0.32, 0.79] $4$ $-4$ $-4$ $-4$ $-4$ $-4$ $-4$ $-6$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.1.2 Cardiac Surgery               |             |         |             |        |                                      |                    |      |                                            |
| Sowade 1997       4       36       19       36       3.8%       0.21 [0.08, 0.56]       1997         D'Ambra 1997       36       119       25       56       6.9%       0.68 [0.45, 1.01]       1997         Podesta 2000       1       30       26       30       1.5%       0.04 [0.01, 0.27]       2000         Weltert 2015       51       300       117       300       7.5%       0.44 [0.33, 0.58]       2015         Urena 2017       13       48       13       52       5.4%       1.08 [0.56, 2.10]       2017         Subtotal (95% CI)       573       490       31.8%       0.51 [0.32, 0.79] $4$ $-4$ $-4$ $-4$ $-4$ $-4$ $-4$ $-6$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$ $-7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kvo 1992                            | 20          | 40      | 12          | 16     | 6.8%                                 | 0.67 (0.44, 1.01)  | 1992 | _ <b>_</b>                                 |
| D'Ambra 1997 36 119 25 56 6.9% $0.68 [0.45, 1.01]$ 1997<br>Podesta 2000 1 30 26 30 1.5% $0.04 [0.01, 0.27]$ 2000<br>Weltert 2015 51 300 117 300 7.5% $0.44 [0.33, 0.58]$ 2015<br>Urena 2017 13 48 13 52 5.4% $1.08 [0.56, 2.10]$ 2017<br>Subtotal (95% CI) 573 490 31.8% $0.51 [0.32, 0.79]$<br>Total events 125 212<br>Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); l <sup>2</sup> = 74%<br>Test for overall effect: Z = 3.02 (P = 0.003)<br>4.1.3 Colorectal Cancer Surgery<br>Heiss 1996 9 17 4 10 4.2% $1.32 [0.55, 3.20]$ 1996<br>Kettelhack 1998 16 48 15 54 5.8% $1.20 [0.67, 2.16]$ 1998<br>Qvist 1999 13 38 23 43 6.2% $0.64 [0.38, 1.08]$ 1999<br>Christodoulakis 2005 59 136 36 68 7.5% $0.82 [0.61, 1.10]$ 2005<br>Subtotal (95% CI) 239 175 23.7% $0.86 [0.67, 1.12]$<br>Total events 97 78<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); l <sup>2</sup> = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total (95% CI) 1984 1361 100.0% $0.58 [0.45, 0.74]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sowade 1997                         | 4           | 36      | 19          | 36     | 3.8%                                 |                    |      |                                            |
| Podesta 2000 1 30 26 30 1.5% 0.04 [0.01, 0.27] 2000<br>Weltert 2015 51 300 117 300 7.5% 0.44 [0.33, 0.58] 2015<br>Urena 2017 13 48 13 52 5.4% 1.08 [0.56, 2.10] 2017<br>Subtotal (95% CI) 573 490 31.8% 0.51 [0.32, 0.79]<br>Total events 125 212<br>Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); l <sup>2</sup> = 74%<br>Test for overall effect: Z = 3.02 (P = 0.003)<br>4.1.3 Colorectal Cancer Surgery<br>Heiss 1996 9 17 4 10 4.2% 1.32 [0.55, 3.20] 1996<br>Kettelhack 1998 16 48 15 54 5.8% 1.20 [0.67, 2.16] 1998<br>Quist 1999 13 38 23 43 6.2% 0.64 [0.38, 1.08] 1999<br>Christodoulakis 2005 59 136 36 68 7.5% 0.82 [0.61, 1.10] 2005<br>Subtotal (95% CI) 239 175 23.7% 0.86 [0.67, 1.12]<br>Total events 97 78<br>Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); l <sup>2</sup> = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total (95% CI) 1984 1361 100.0% 0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D'Ambra 1997                        | 36          | 119     | 25          | 56     | 6.9%                                 |                    |      |                                            |
| Urena 2017       13       48       13       52       5.4%       1.08 [0.56, 2.10]       2017         Subtotal (95% CI)       573       490       31.8%       0.51 [0.32, 0.79]       2017         Total events       125       212         Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); l <sup>2</sup> = 74%         Test for overall effect: Z = 3.02 (P = 0.003) <b>4.1.3 Colorectal Cancer Surgery</b> Heiss 1996       9       17       4       10       4.2%       1.32 [0.55, 3.20]       1996         Kettelhack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Christodoulakis 2005       59       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% CI)       239       175       23.7%       0.86 [0.67, 1.12]       4         Total events       97       78       14%       1361       100.0%       0.58 [0.45, 0.74]       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Podesta 2000                        | 1           | 30      | 26          | 30     | 1.5%                                 |                    |      | →                                          |
| Subtotal (95% CI)       573       490 $31.8\%$ $0.51$ [ $0.32$ , $0.79$ ]         Total events       125       212         Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); I <sup>2</sup> = 74%         Test for overall effect: Z = $3.02$ (P = $0.003$ ) <b>4.1.3 Colorectal Cancer Surgery</b> Heiss 1996       9       17       4       10 $4.2\%$ 1.32 [ $0.55$ , $3.20$ ]       1996 <b>4.1.3 Colorectal Cancer Surgery</b> Heiss 1996       9       17       4       10 $4.2\%$ 1.32 [ $0.55$ , $3.20$ ]       1996         Kettelhack 1998       16       48       15       54       5.8%       1.20 [ $0.67$ , 2.16]       1998         Quist 1999       13       38       23       43       6.2%       0.64 [ $0.38$ , 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [ $0.61$ , 1.10]       2005         Subtotal (95% CI)       239       175       23.7%       0.86 [ $0.67$ , 1.12]       Total events       97       78         Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%       Test for overall effect; Z = 1.09 (P = 0.27)       Total (95% CI)       1984       1361       100.0%       0.58 [ $0.45$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weltert 2015                        | 51          | 300     | 117         | 300    | 7.5%                                 |                    |      |                                            |
| Total events       125       212         Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); l <sup>2</sup> = 74%         Test for overall effect: Z = 3.02 (P = 0.003)         4.1.3 Colorectal Cancer Surgery         Heiss 1996       9       17       4       10       4.2%       1.32 [0.55, 3.20]       1996         Kettelhack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Qvist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% Cl)       239       175       23.7%       0.86 [0.67, 1.12]       Image: Christodoulakis 2005       Image: Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% Cl)       239       175       23.7%       0.86 [0.67, 1.12]       Image: Christodoulakis 2005       Image: Christodoulakis 2005       100 (P = 0.27)       Image: Christodoulakis 2005       Image: Christodoulakis                                                                                                                                                                                                                                                                                                                                                                                                          | Urena 2017                          | 13          | 48      | 13          | 52     | 5.4%                                 | 1.08 [0.56, 2.10]  | 2017 |                                            |
| Heterogeneity: Tau <sup>2</sup> = 0.19; Chi <sup>2</sup> = 19.38, df = 5 (P = 0.002); l <sup>2</sup> = 74%         Test for overall effect: Z = 3.02 (P = 0.003)         4.1.3 Colorectal Cancer Surgery         Heiss 1996       9       17       4       10       4.2%       1.32 [0.55, 3.20]       1996         Kettelhack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Qvist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% Cl)       239       175       23.7%       0.86 [0.67, 1.12]       Image: Colored and the second and                                                                                                                             | Subtotal (95% CI)                   |             | 573     |             | 490    | 31.8%                                | 0.51 [0.32, 0.79]  |      | -                                          |
| Test for overall effect: Z = $3.02$ (P = $0.003$ )         4.1.3 Colorectal Cancer Surgery         Heiss 1996       9       17       4       10       4.2%       1.32 [0.55, 3.20]       1996         Kettelhack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Zwist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% CI)       239       175       23.7%       0.86 [0.67, 1.12] $\bullet$ Total events       97       78         Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%       Fest for overall effect: Z = 1.09 (P = 0.27)         Total (95% CI)       1984       1361       100.0%       0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total events                        | 125         |         | 212         |        |                                      |                    |      |                                            |
| 4.1.3 Colorectal Cancer Surgery         Heiss 1996       9       17       4       10       4.2%       1.32 [0.55, 3.20]       1996         Kettelhack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Quist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% CI)       239       175       23.7%       0.86 [0.67, 1.12]       •         Total events       97       78         Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%       •         Test for overall effect: Z = 1.09 (P = 0.27)       •         Total (95% CI)       1984       1361       100.0%       0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heterogeneity: Tau <sup>2</sup> = 0 | .19; Chi² = | 19.38,  | df = 5 (P   | = 0.00 | 2);   <sup>2</sup> = 74 <sup>4</sup> | %                  |      |                                            |
| Heiss 1996       9       17       4       10       4.2%       1.32 [0.55, 3.20]       1996         Kettelhack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Qvist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtoal (95% CI)       239       175       23.7%       0.86 [0.67, 1.12]       •         Total events       97       78         Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%       •         Test for overall effect: Z = 1.09 (P = 0.27)       •         Total (95% CI)       1984       1361       100.0%       0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test for overall effect: Z          | = 3.02 (P   | = 0.003 | i) `        |        |                                      |                    |      |                                            |
| Kettelihack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Qvist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% CI)       239       175       23.7%       0.86 [0.67, 1.12]       •         Total events       97       78         Heterogeneity: Tau² = 0.01; Chi² = 3.49, df = 3 (P = 0.32); P = 14%       •         Test for overall effect: Z = 1.09 (P = 0.27)       •         Total (95% CI)       1984       1361       100.0%       0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1.3 Colorectal Cance              | r Surgery   | ,       |             |        |                                      |                    |      |                                            |
| Kettelihack 1998       16       48       15       54       5.8%       1.20 [0.67, 2.16]       1998         Qvist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% CI)       239       175       23.7%       0.86 [0.67, 1.12]       •         Total events       97       78         Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); P = 14%       •         Test for overall effect: Z = 1.09 (P = 0.27)       •         Total (95% CI)       1984       1361       100.0%       0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heiss 1996                          | 9           | 17      | 4           | 10     | 4.2%                                 | 1.32 [0.55, 3.20]  | 1996 |                                            |
| Qvist 1999       13       38       23       43       6.2%       0.64 [0.38, 1.08]       1999         Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% Cl)       239       175       23.7%       0.86 [0.67, 1.12]       •         Total events       97       78         Heterogeneity: Tau² = 0.01; Chi² = 3.49, df = 3 (P = 0.32); l² = 14%       •         Test for overall effect: Z = 1.09 (P = 0.27)       •         Total (95% Cl)       1984       1361       100.0%       0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kettelhack 1998                     | 16          |         | 15          | 54     | 5.8%                                 |                    |      | -+                                         |
| Christodoulakis 2005       59       136       36       68       7.5%       0.82 [0.61, 1.10]       2005         Subtotal (95% Cl)       239       175       23.7%       0.86 [0.67, 1.12]       ▲         Total events       97       78         Heterogeneity: Tau² = 0.01; Chi² = 3.49, df = 3 (P = 0.32); I² = 14%         Test for overall effect: Z = 1.09 (P = 0.27)         Total (95% Cl)       1984       1361       100.0%       0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qvist 1999                          | 13          | 38      | 23          | 43     | 6.2%                                 |                    |      | +                                          |
| Subtotal (95% CI)         239         175         23.7%         0.86 [0.67, 1.12]           Total events         97         78           Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); I <sup>2</sup> = 14%           Test for overall effect: Z = 1.09 (P = 0.27)           Total (95% CI)         1984         1361         100.0%         0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Christodoulakis 2005                | 59          | 136     | 36          | 68     | 7.5%                                 |                    |      | +                                          |
| Heterogeneity: Tau <sup>2</sup> = 0.01; Chi <sup>2</sup> = 3.49, df = 3 (P = 0.32); l <sup>2</sup> = 14%<br>Test for overall effect: Z = 1.09 (P = 0.27)<br>Total (95% Cl) 1984 1361 100.0% 0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Subtotal (95% CI)                   |             | 239     |             | 175    | 23.7%                                | 0.86 [0.67, 1.12]  |      | •                                          |
| Test for overall effect: Z = 1.09 (P = 0.27) Total (95% CI) 1984 1361 100.0% 0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total events                        | 97          |         | 78          |        |                                      | -                  |      |                                            |
| Total (95% Cl) 1984 1361 100.0% 0.58 [0.45, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heterogeneity: Tau <sup>2</sup> = 0 | .01; Chi² = | 3.49, c | if = 3 (P = | 0.32); | $ ^2 = 14\%$                         |                    |      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fest for overall effect: Z          | = 1.09 (P   | = 0.27) |             |        |                                      |                    |      |                                            |
| Total events 456 595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total (95% CI)                      |             | 1984    |             | 1361   | 100.0%                               | 0.58 [0.45, 0.74]  |      | •                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total events                        | 456         |         | 595         |        |                                      |                    |      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | est for overall effect: Z           | = 4.23 (P   | < 0.000 | 1)          |        |                                      |                    |      | 0.05 0.2 1<br>Favours ESA + Iron Favours I |

Test for subgroup differences: Chi<sup>2</sup> = 7.04, df = 2 (P = 0.03), l<sup>2</sup> = 71.6%

Fig. 4 Forest plot showing the effect of erythropoiesis stimulating agents (ESA) and iron vs iron on number of patients transfused with red blood cells (RBCs) (primary outcome), stratified by type of surgery

### **TWO ISSUES**

#### 1. PREOPERATIVE ANEMIA

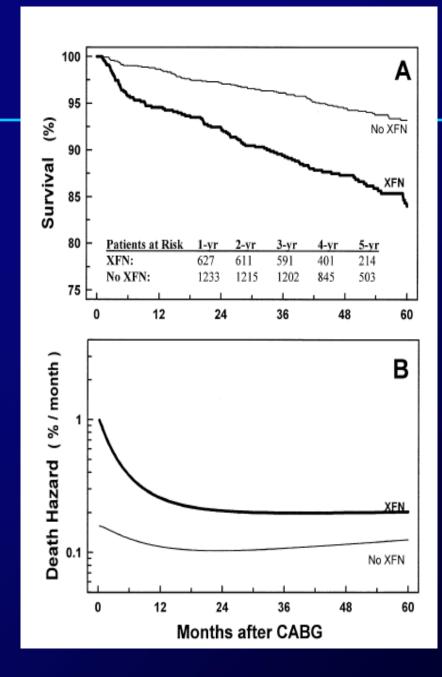
### 2. LIBERAL vs RESTRICTIVE TRANSFUSIONS





#### 1. PREOPERATIVE ANEMIA

#### 2. LIBERAL vs RESTRICTIVE TRANSFUSIONS




#### Effect of Blood Transfusion on Long-Term Survival After Cardiac Operation

#### Milo C. Engoren, MD, Robert H. Habib, PhD, Anoar Zacharias, MD, Thomas A. Schwann, MD, Christopher J. Riordan, MD, and Samuel J. Durham, MD

Departments of Anesthesiology and Cardiovascular Surgery, St. Vincent Mercy Medical Center, and Medical College of Ohio, Toledo, Ohio







#### Transfusion of Blood Components and Postoperative Infection in Patients Undergoing Cardiac Surgery\*

Santiago Ramón Leal-Noval, MD; María Dolores Rincón-Ferrari, MD; Andrés García-Curiel, MD; Angel Herruzo-Avilés, MD; Pedro Camacho-Laraña, MD; José Garnacho-Montero, MD; and Rosario Amaya-Villar, MD



|                                            | Patie    | nts, %  |     |         |
|--------------------------------------------|----------|---------|-----|---------|
|                                            | SPI      | Non-SPI |     |         |
| Variables                                  | (n = 70) | (n=668) | RR  | p Value |
| Reintubation                               | 42.9     | 3.4     | 9.7 | 0.001   |
| $MV \ge 48 h$                              | 40       | 4.6     | 7.7 | 0.001   |
| Sternal dehiscence                         | 8.6      | 0.7     | 6.2 | 0.001   |
| Reintervention                             | 25.7     | 4.8     | 4.7 | 0.001   |
| Neurologic dysfunction                     | 28.6     | 5.7     | 4.7 | 0.001   |
| Transfusion $\geq 4 \text{ U RBC}$         | 71.4     | 37.3    | 3.7 | 0.001   |
| concentrates                               |          |         |     |         |
| Total transfusion $\geq 4$ U               | 72.9     | 40.6    | 3.5 | 0.001   |
| Arterial hypotension                       | 67.1     | 36.5    | 3.1 | 0.001   |
| APACHE II score $\geq 12$                  | 61.4     | 33.5    | 2.8 | 0.001   |
| Platelet transfusion $\geq 1$ U            | 25.7     | 10.6    | 2.5 | 0.001   |
| Mediastinal bleeding $\geq 800 \text{ mL}$ | 61.4     | 36.4    | 2.5 | 0.001   |
| Postoperative cardiac failure              | 22.9     | 10.3    | 2.3 | 0.003   |
| Transfusion ≥ 2 U plasma                   | 35.7     | 18.9    | 2.2 | 0.002   |
| Necessity of catecholamines                | 84.2     | 70      | 2.2 | 0.017   |
| Perioperative AMI                          | 15.7     | 7.6     | 2   | 0.036   |
| Time of CPB $\geq 110 \text{ min}$         | 57.1     | 39.4    | 1.9 | 0.006   |
| Left atrial catheter                       | 37.1     | 25.1    | 1.6 | 0.043   |

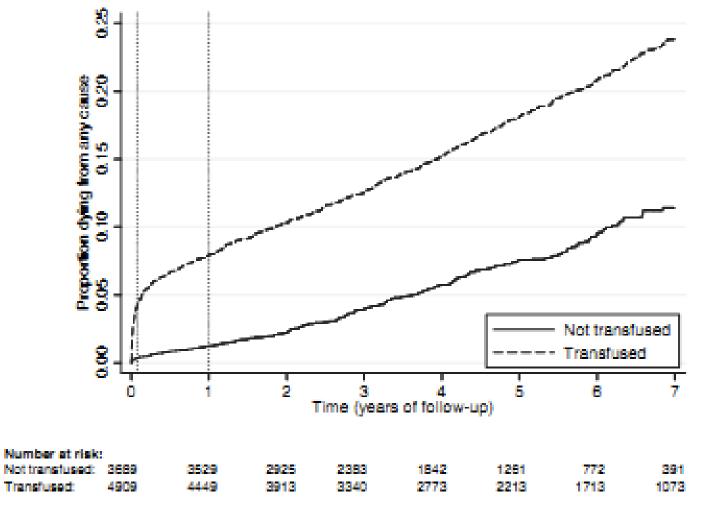
#### Table 2—Significant Factors for the Acquisition of SPI\*

\*RR = relative risk; AMI = acute myocardial infarction. See Table 1 for abbreviations not used in text.



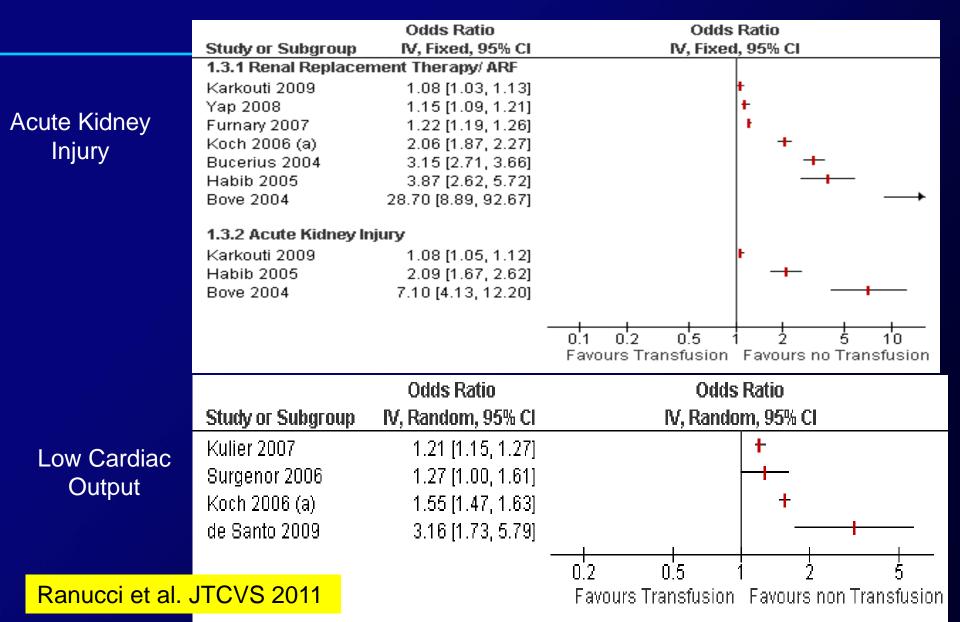
#### **Cardiovascular Surgery**

#### Increased Mortality, Postoperative Morbidity, and Cost After Red Blood Cell Transfusion in Patients Having Cardiac Surgery


Gavin J. Murphy, BSc, ChB, MD, FRCS(CTh); Barnaby C. Reeves, BA, MSc, DPhil; Chris A. Rogers, BSc, PhD; Syed I.A. Rizvi, MBBCh, MRCS; Lucy Culliford, BSc, MSc, PhD; Gianni D. Angelini, MCh, MD, FRCS, FETCS

Background—Red blood cell transfusion can both benefit and harm. To inform decisions about transfusion, we aimed to quantify associations of transfusion with clinical outcomes and cost in patients having cardiac surgery.

Methods and Results—Clinical, hematology, and blood transfusion databases were linked with the UK population register. Additional hematocrit information was obtained from intensive care unit charts. Composite infection (respiratory or wound infection or septicemia) and ischemic outcomes (myocardial infarction, stroke, renal impairment, or failure) were prespecified as coprimary end points. Secondary outcomes were resource use, cost, and survival. Associations were estimated by regression modeling with adjustment for potential confounding. All adult patients having cardiac surgery between April 1, 1996, and December 31, 2003, with key exposure and outcome data were included (98%). Adjusted odds ratios for composite infection (737 of 8516) and ischemic outcomes (832 of 8518) for transfused versus nontransfused patients were 3.38 (95% confidence interval [CI], 2.60 to 4.40) and 3.35 (95% CI, 2.68 to 4.35), respectively. Transfusion was associated with increased relative cost of admission (any transfusion, 1.42 times [95% CI, 1.37 to 1.46], varying from 1.11 for 1 U to 3.35 for >9 U). At any time after their operations, transfused patients were less likely to have been discharged from hospital (hazard ratio [HR], 0.63; 95% CI, 0.60 to 0.67) and were more likely to have died (0 to 30 days: HR, 6.69; 95% CI, 3.66 to 15.1; 31 days to 1 year: HR, 2.59; 95% CI, 1.68 to 4.17; >1 year: HR, 1.32; 95% CI, 1.08 to 1.64).


Conclusions—Red blood cell transfusion in patients having cardiac surgery is strongly associated with both infection and ischemic postoperative morbidity, hospital stay, increased early and late mortality, and hospital costs. (Circulation. 2007;116:2544-2552.)

Key Words: infection ■ myocardial infarction ■ stroke ■ surgery ■ blood transfusions



-

### Transfusion and Organ Injury

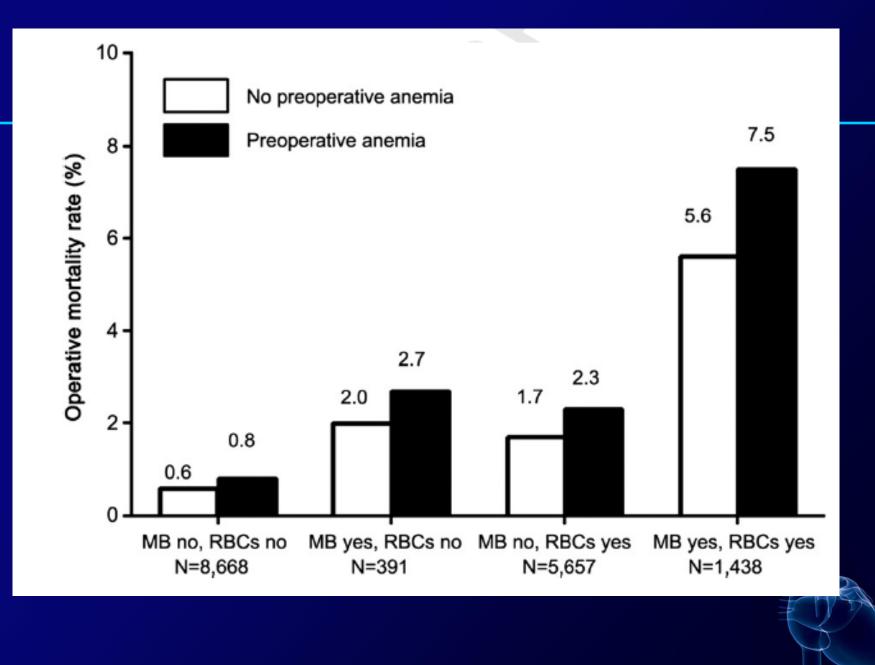


#### Major Bleeding, Transfusions, and Anemia: The Deadly Triad of Cardiac Surgery

Q4 Marco Ranucci, MD, FESC, Ekaterina Baryshnikova, BD, Serenella Castelvecchio, MD, FESC, and Gabriele Pelissero, MD, PhD; for the Surgical and Clinical Outcome Research (SCORE) Group

Departments of Cardiothoracic, and Vascular Anesthesia and Intensive Care, Scientific Directorate, IRCCS Policlinico San Donato, Milan, Italy

*Background.* Postoperative bleeding is common after cardiac surgery. Major bleeding (MB) is a determinant of red blood cell (RBC) transfusion, especially in patients with preoperative anemia. Preoperative anemia and RBC transfusions are recognized risk factors for operative mortality. The present study investigates the role of MB as an independent determinant of operative mortality in cardiac surgery.


*Methods.* A single-center retrospective study based on the institutional database of cardiac surgery in the period 2000–2012 was conducted. Sixteen thousand one hundred fifty-four (16,154) consecutive adult patients undergoing cardiac surgery were analyzed. The impact of postoperative bleeding and MB on operative (30 days) mortality was analyzed univariately and after correction for preoperative anemia, RBC transfusions, and other confounders.

*Results.* Postoperative bleeding was significantly (p < 0.001) associated with operative mortality, both in

univariate and multivariable models. The main complications associated with MB were thromboembolic complications, infections, and surgical reexploration. In a multivariable model, MB remained an independent predictor of operative mortality (odds ratio, 3.45; 95% confidence interval, 2.78 to 4.28). Preoperative anemia and RBC transfusions coexist in the model, acting with a multiplying effect when associated with MB.

*Conclusions.* Major bleeding is per se a risk factor for operative mortality. However, its deleterious effects are strongly enhanced by RBC transfusions and, to a lesser extent, preoperative anemia. Major bleeding is a partially modifiable risk factor, and adequate preemptive and treatment strategies should be applied to limit this event.

> (Ann Thorac Surg 2013;∎:■-■) © 2013 by The Society of Thoracic Surgeons



## THE TRIAD

#### **1.ANEMIA: A DISEASE**

### 2.BLEEDING: A SYMPTOM OF A DISEASE

### 3.TRANSFUSION: A THERAPY OF A SYMPTOM / DISEASE



## THE TRIAD

#### TRANSFUSION: A THERAPY OF A SYMPTOM / DISEASE

1. Transfusion is decided by the doctors

2. They can be used or avoided on clinical judgement

3. TRANSFUSION IS NOT AN OUTCOME

Can J Anesth/J Can Anesth (2016) 63:169-175 DOI 10.1007/s12630-015-0515-8

REVIEW ARTICLE/BRIEF REVIEW



Outcome measures and quality markers for perioperative blood loss and transfusion in cardiac surgery

Critères d'évaluation et marqueurs de qualité pour les pertes sanguines et les transfusions périopératoires en chirurgie cardiaque

Marco Ranucci, MD



Transfusion rates and volumes may be used as primary endpoints as a surrogate for bleeding in studies exploring the effects of hemostatic drugs/products, but such studies must strictly adhere to the transfusion protocols and measures to avoid the confounding effects of anemia. Transfusion-related endpoints may be good markers of quality of care and are appropriate to assess the success of PBM programs.





- 1. ARE TRANSFUSIONS HARMFUL IN SURGERY
- 2. WHAT IS THE LEVEL OF THE EVIDENCE?
- 3. WHAT IS «liberal» and WHAT IS «restrictive»?



# TRANSFUSIONS LEAD TO BAD OUTCOMES IN CARDIAC SURGERY

# WHERE IS THE EVIDENCE COMING FROM?

Hundreds of studies found an association between RBC transfusions and bad outcomes in cardiac surgery

They all share one factor: RETROSPECTIVE STUDIES

# **RETROSPECTIVE STUDIES**

- ADJUSTED FOR CONFOUNDERS
- PROPENSITY MATCHED
- NEVER CONSIDERING THE CLINICAL
   JUDGEMENT
- TRANSFUSIONS ARE MORE OFTEN USED IF
   THE CLINICIANS FEEL THAT THE PATIENT IS
   LESS ABLE TO TOLERATE ANEMIA



# **RETROSPECTIVE STUDIES**

EVERY TIME WE RETROSPECTIVELY INVESTIGATE THE ASSOCIATION BETWEEN A THERAPY AIMED TO CORRECT AN ACUTE CONDITION, WE WILL INVARIABLY FIND AN ASSOCIATION WITH BAD OUTCOMES



## NEED EXAMPLES

### WHENEVER WE DECIDE TO USE:

- 1. An inotropic support
- 2. An IABP
- 3. An ECMO
- 4. A ventilatory support
- 5. PEEP

....and dozen of other therapies...



### NEED EXAMPLES

THOSE WHO ARE IN NEED FOR A THERAPY WILL HAVE, WHEN RETROSPECTIVELY ANALYZED, WORSE OUTCOMES THAN THOSE WHO DID NOT REQUIRE IT

Should we stop using inotropes, High PEEP, ECMO, because of this?

# **RETROSPECTIVE STUDIES**

# RETROSPECTIVE STUDIES MAY ONLY FIND ASSOCIATION, NOT CAUSATION.

THEY ARE VERY USEFUL TO RAISE A HYPOTHESIS

IF YOU WANT TO CONFIRM THE HYPOTHESIS, YOU NEED AN RCT



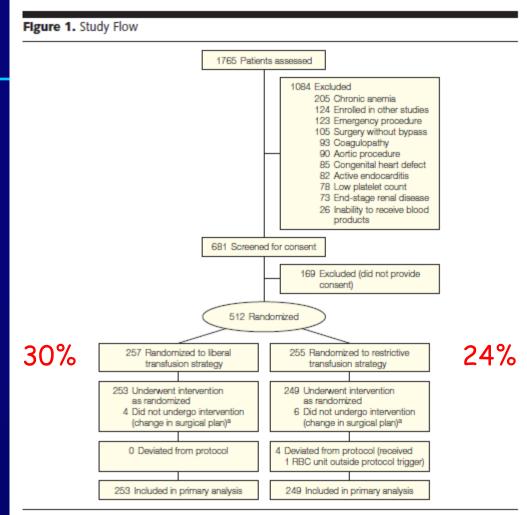
# THE RANDOMIZED CONTROLLED TRIALS



#### Transfusion Requirements After Cardiac Surgery The TRACS Randomized Controlled Trial

| Ludhmila A. Hajjar, MD, PhD      |
|----------------------------------|
| Jean-Louis Vincent, MD, PhD      |
| Filomena R. B. G. Galas, MD, PhD |
| Rosana E. Nakamura, MD           |
| Carolina M. P. Silva, MD         |
| Marilia H. Santos, MD, PhD       |
| Julia Fukushima, MSc             |
| Roberto Kalil Filho, MD, PhD     |
| Denise B. Sierra, MD             |
| Neuza H. Lopes, MD, PhD          |
| Thais Mauad, MD, PhD             |
| Aretusa C. Roquim, MD            |
| Marcia R. Sundin, MD             |
| Wanderson C. Leão, MD            |
| Juliano P. Almeida, MD           |
| Pablo M. Pomerantzeff, MD, PhD   |
| Luis O. Dallan, MD, PhD          |
| Fabio B. Jatene, MD, PhD         |
| Noedir A. G. Stolf, MD, PhD      |
| Jose O. C. Auler Jr, MD, PhD     |
|                                  |

**Context** Perioperative red blood cell transfusion is commonly used to address anemia, an independent risk factor for morbidity and mortality after cardiac operations; however, evidence regarding optimal blood transfusion practice in patients undergoing cardiac surgery is lacking.


**Objective** To define whether a restrictive perioperative red blood cell transfusion strategy is as safe as a liberal strategy in patients undergoing elective cardiac surgery.

**Design, Setting, and Patients** The Transfusion Requirements After Cardiac Surgery (TRACS) study, a prospective, randomized, controlled clinical noninferiority trial conducted between February 2009 and February 2010 in an intensive care unit at a university hospital cardiac surgery referral center in Brazil. Consecutive adult patients (n=502) who underwent cardiac surgery with cardiopulmonary bypass were eligible; analysis was by intention-to-treat.

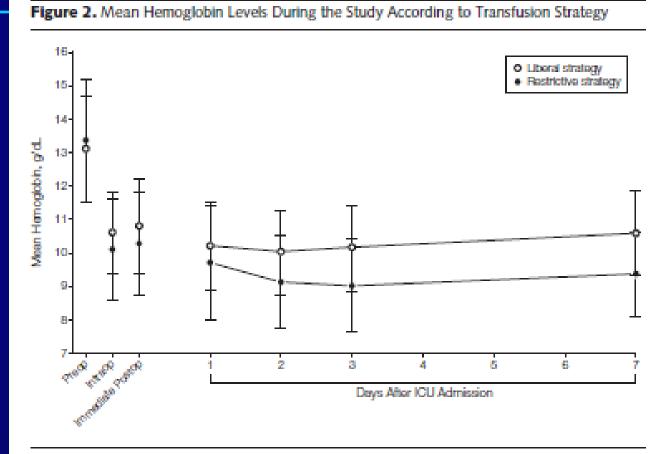
**Intervention** Patients were randomly assigned to a liberal strategy of blood transfusion (to maintain a hematocrit  $\geq$ 30%) or to a restrictive strategy (hematocrit  $\geq$ 24%).

**Main Outcome Measure** Composite end point of 30-day all-cause mortality and severe morbidity (cardiogenic shock, acute respiratory distress syndrome, or acute renal injury requiring dialysis or hemofiltration) occurring during the hospital stay. The noninferiority margin was predefined at -8% (ie, 8% minimal clinically important increase in occurrence of the composite end point).

**Results** Hemoglobin concentrations were maintained at a mean of 10.5 g/dL (95% confidence interval [CI], 10.4-10.6) in the liberal-strategy group and 9.1 g/dL (95% CI, 9.0-9.2) in the restrictive-strategy group (P<.001). A total of 198 of 253 patients (78%) in the liberal-strategy group and 118 of 249 (47%) in the restrictive-strategy group received a blood transfusion (P<.001). Occurrence of the primary end point was similar between groups (10% liberal vs 11% restrictive; between-group difference, 1% [95% CI, -6% to 4%]; P=.85). Independent of transfusion strategy, the number of transfused red blood

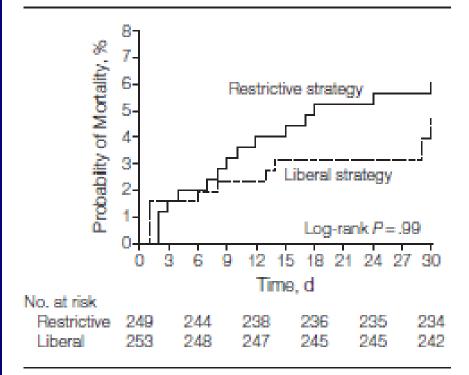


RBC indicates red blood cell.


<sup>a</sup>Patients excluded after consent because of a change in surgical plan such that surgery was performed without cardiopulmonary bypass.



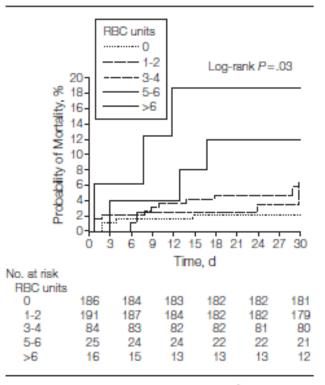
|                                                               | No. (%)                       |                                   |           |
|---------------------------------------------------------------|-------------------------------|-----------------------------------|-----------|
| Variable                                                      | Liberal Strategy<br>(n = 253) | Restrictive Strategy<br>(n = 249) | р<br>Valu |
| Age, mean (SD), y                                             | 60.7 (12.5)                   | 58.6 (12.5)                       | 0.        |
| Men                                                           | 161 (64)                      | 149 (60)                          | .3        |
| Body mass index, mean (SD)ª                                   | 26.1 (4.3)                    | 26.3 (4.4)                        | .6        |
| Cornorbid conditions                                          |                               |                                   |           |
| Hypertension                                                  | 201 (79)                      | 192 (77)                          | .5        |
| Diabetes                                                      | 79 (31)                       | 86 (35)                           | .4        |
| Dyslipidemia                                                  | 139 (55)                      | 147 (60)                          | .3        |
| Renal disease                                                 | 26 (11)                       | 26 (11)                           | .5        |
| Smoking                                                       | 34 (14)                       | 38 (16)                           | .7        |
| COPD                                                          | 6 (2)                         | 8 (3)                             | .5        |
| Unstable angina.                                              | 79 (31)                       | 76 (31)                           | .8        |
| Previous myocardial infarction                                | 86 (34)                       | 89 (36)                           | .6        |
| Heart failure, NYHA classification                            | 8 (6)                         | 8 (7)                             |           |
| 1                                                             | 42 (34)                       | 48 (41)                           | .5        |
| III                                                           | 65 (52)                       | 49 (42)                           |           |
| IV                                                            | 10 (8)                        | 11 (10)                           |           |
| .VEF, %<br>30-39                                              | 32 (13)                       | 37 (15)                           |           |
| 40-59                                                         | 76 (30)                       | 75 (30)                           | .7        |
| ≥60                                                           | 145 (57)                      | 137 (55)                          |           |
| Reoperation                                                   | 11 (4)                        | 13 (5)                            | .6        |
| EuroSCORE, median (IQR)                                       | 5 (3-6)                       | 4 (3-7)                           | .0        |
| Preoperative laboratory values, mean (SD)<br>Hemoglobin, g/dL | 13.1 (1.6)                    | 13.4 (1.8)                        | .1        |
| Hernatocrit, %                                                | 39.5 (4.3)                    | 39.9 (5.2)                        | .6        |
| Prothrombin time, s                                           | 11.3 (1.1)                    | 11.3 (2.2)                        | .5        |
| Platelet count, ×10%/µL                                       | 222 (67)                      | 225 (66)                          | 8.        |
| Creatinine level, mg/dL                                       | 1.12 (0.4)                    | 1.12 (0.3)                        | .9        |
| Leukocyte count/µL                                            | 7600 (2100)                   | 7700 (2000)                       | .5        |
| Preoperative drug exposure<br>Aspirin                         | 103 (41)                      | 94 (38)                           | .5        |
| Heparin                                                       | 3 (1)                         | 2 (1)                             | >.8       |


Abbreviations: COPD, chronic obstructive pulmonary disease; EuroSCOPE, European System for Cardiac Operative Risk Evaluation; ICR, interquartile range; LVEF, left ventricular ajoction fraction; NYHA, New York Heart Association. SI convenien factor: To convert creatinitine values to unnol1, multiply by 88.4, <sup>a</sup>Calculated as weight in kilograms divided by height in meters squared.





P<.05 between the groups at all points following preop. Error bars indicate 95% confidence intervals. ICU indicates intensive care unit.


Figure 3. Kaplan-Meier Estimates of 30-Day Survival by Transfusion Strategy



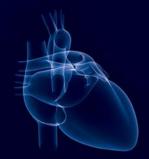

Time zero was just after randomization (12 hours before surgery). Hazard ratio, 1.28 (95% confidence interval, 0.60-2.73) (P=.99) for restrictive strategy vs liberal strategy.



Figure 4. Kaplan-Meier Estimates of 30-Day Survival Based on Number of Red Blood Cell (RBC) Units Transfused



Time zero was just after randomization (12 hours before surgery). With 0 RBC units as the reference category, the hazard ratio was 2.97 (95% confidence interval [CI], 0.96-9.21) (P=.06) for 1 to 2 RBC units; 2.78 (95% CI, 0.75-10.35) (P=.13) for 3 to 4 units; 5.82 (95% CI, 1.30-26.02) (P=.02) for 5 to 6 units; and 9.70 (95% CI, 2.17-43.34) (P=.003) for more than 6 units.



### **TRACS: Outcomes**

| Outcome                      | Liberal | Restrictive | Difference         | P Value |
|------------------------------|---------|-------------|--------------------|---------|
| Death,<br>Major<br>Morbidity | 10%     | 11%         | 1.5<br>(-6% to 4%) | 0.87    |
| 30 Day<br>mortality          | 5%      | 6%          |                    | 0.42    |
| ARDS                         | 1%      | 2%          |                    | 0.99    |
| RRT                          | 5%      | 4%          |                    | 0.99    |
| Cardiac<br>Morbidity         | 21%     | 24%         |                    | 0.27    |
| Infection                    | 10%     | 12%         |                    | 0.58    |
| Transfusion                  | 78%     | 47% !!!     |                    | <0.001  |

Perioperative Management

### A liberal strategy of red blood cell transfusion reduces cardiogenic shock in elderly patients undergoing cardiac surgery

Rosana Ely Nakamura, MD,<sup>a</sup> Jean-Louis Vincent, PhD,<sup>b</sup> Julia Tizue Fukushima, MSc,<sup>a</sup> Juliano Pinheiro de Almeida, MD, PhD,<sup>a</sup> Rafael Alves Franco, MD,<sup>a</sup> Clarice Lee Park, MD,<sup>a</sup> Eduardo Atsushi Osawa, MD,<sup>a</sup> Carolina Maria Pinto Silva, MD,<sup>a</sup> Jose Otavio Costa Auler, Jr, PhD,<sup>a</sup> Giovanni Landoni, PhD,<sup>c</sup> Filomena Regina Barbosa Gomes Galas, PhD,<sup>a</sup> Roberto Kalil Filho, PhD,<sup>d</sup> and Ludhmila Abrahao Hajjar, PhD<sup>a</sup>



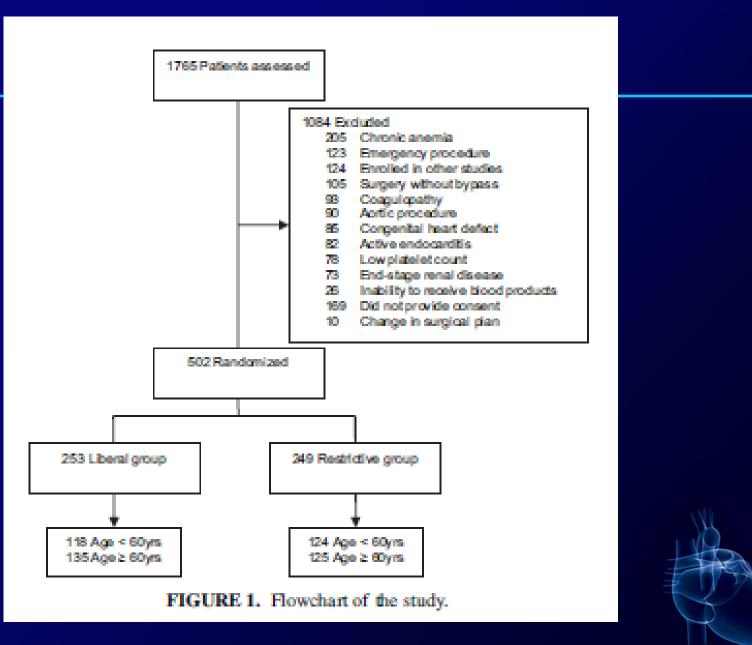



TABLE 3. Incidence of the primary end point—composite of 30-day all-cause mortality and severe morbidity (cardiogenic shock, acute respiratory distress syndrome, or acute renal injury requiring dialysis or hemofiltration)—and its individual components according to transfusion strategy in the 2 age groups

|                                  | Ag            | e <60 y           |      | Ag            |                   |     |
|----------------------------------|---------------|-------------------|------|---------------|-------------------|-----|
| End point                        | Liberal n (%) | Restrictive n (%) | P    | Liberal n (%) | Restrictive n (%) | P   |
| Primary composite end point      | 8 (6.8)       | 7 (5.6)           | .71  | 16 (11.9)     | 21 (16.8)         | .25 |
| 30-d mortality                   | 5(42)         | 5 (4.0)           | 1.00 | 7 (5.2)       | 10 (8.0)          | .35 |
| Cardiogenic shock                | 5 (4.2)       | 6 (4.8)           | .82  | 7 (5.2)       | 16(12.8)          | .03 |
| ARDS                             | 2(1.7)        | 2 (1.6)           | 1.00 | 0 (0)         | 3 (2.4)           | .11 |
| Acute renal injury requiring RRT | 3 (2.5)       | 4 (3.2)           | 1.00 | 10 (7.4)      | 6 (4.8)           | .38 |

ARDS, Acute respiratory distress syndrome; RRT, renal replacement therapy.

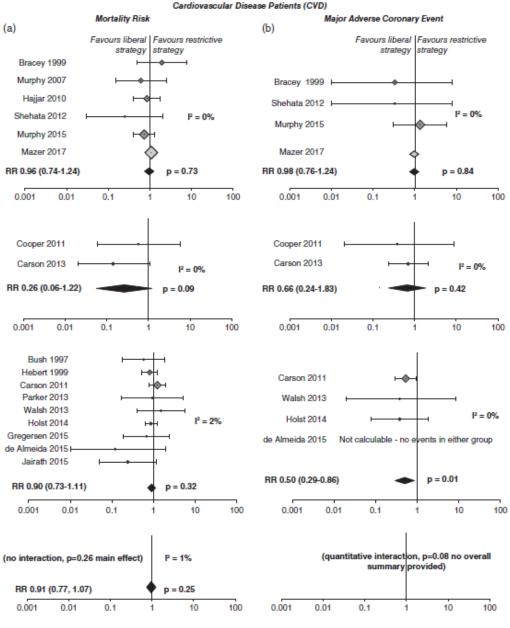


TRANSFUSION MEDICINE

Official Journal of the British Blood Transfusion Society



Transfusion Medicine | ORIGINAL ARTICLE


### Risks of restrictive red blood cell transfusion strategies in patients with cardiovascular disease (CVD): a meta-analysis

I. Cortés-Puch,<sup>1</sup> B. M. Wiley,<sup>1,2</sup> J. Sun,<sup>1</sup> H. G. Klein,<sup>3</sup> J. Welsh,<sup>4</sup> R. L. Danner,<sup>1</sup> P. Q. Eichacker<sup>1</sup> & C. Natanson<sup>1</sup>

<sup>1</sup>Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA, <sup>2</sup>Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA, <sup>3</sup>Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA, and <sup>4</sup>National Institutes of Health Library, National Institutes of Health, Bethesda, Maryland, USA

Received 20 October 2017; accepted for publication 4 April 2018





#### Risk Ratio (RR) for Mortality (±95% confidence interval)

Risk Ratio (RR) for MACE (±95% confidence interval

Fig. 5. Combined mortality and MACE rates for cardiovascular disease patients hospitalised for non-cardiac indications or percutaneous cardiac corrective procedures or cardiac surgery. The combined overall relative risk for mortality (a) and MACE (b) in patients with cardiovascular disease are plotted here for a liberal versus restrictive strategy for cardiovascular disease patients hospitalised for cardiac surgery (top panels) or percutaneous cardiac corrective procedures (middle panels) or non-cardiac indications (bottom panels).

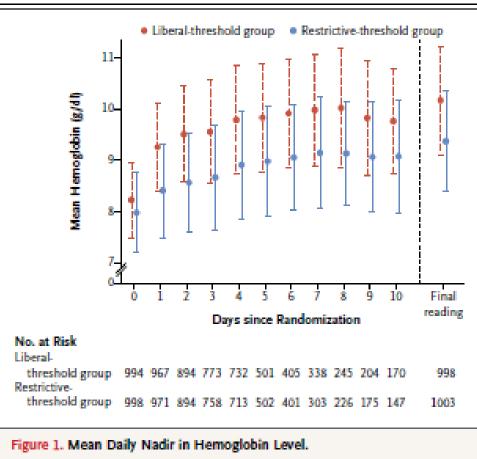


### The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MARCH 12, 2015

VOL. 372 NO. 11


### Liberal or Restrictive Transfusion after Cardiac Surgery

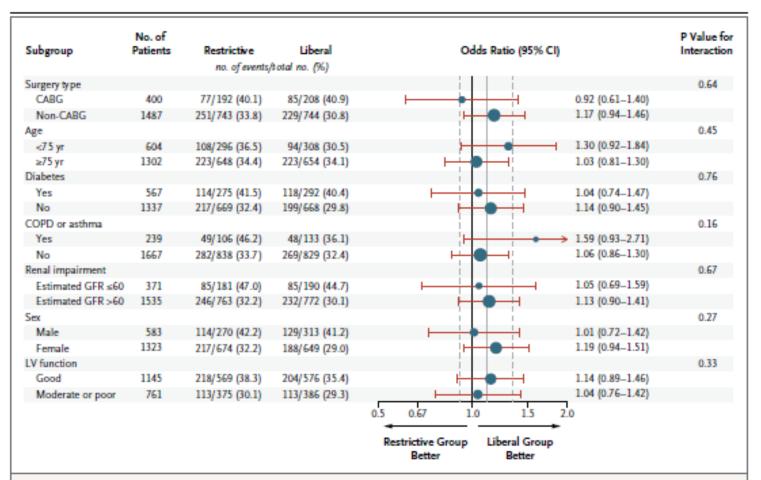
Gavin J. Murphy, F.R.C.S., Katie Pike, M.Sc., Chris A. Rogers, Ph.D., Sarah Wordsworth, Ph.D., Elizabeth A. Stokes, M.Sc., Gianni D. Angelini, F.R.C.S., and Barnaby C. Reeves, D.Phil., for the TITRe2 Investigators\*

ABSTRACT

| Table 1. Preoperative and Intraoperative Characteristics.* | Hb 7.5 g/dL                                       | . Hb 9 g/dL                                    |
|------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|
| Characteristic                                             | Restrictive<br>Transfusion Threshold<br>(N= 1000) | Liberal<br>Transfusion Threshold<br>(N = 1003) |
| Preoperative                                               |                                                   |                                                |
| Age — yr                                                   |                                                   |                                                |
| Median                                                     | 69.9                                              | 70.8                                           |
| Interquartile range                                        | 63.1-76.0                                         | 64.1-76.7                                      |
| Male sex — no. (%)                                         | 693 (69.3)                                        | 680 (67.8)                                     |
| Body-mass index+                                           | 28.2±5.0                                          | 28.2±4.9                                       |
| EuroSCORE:                                                 |                                                   |                                                |
| Median                                                     | 5.0                                               | 5.0                                            |
| Interquartile range                                        | 3.0-7.0                                           | 3.0-7.0                                        |
| NYHA class — no./<br>total no. (%)§                        |                                                   |                                                |
| - I                                                        | 235/977 (24.1)                                    | 258/974 (26.5)                                 |
| II.                                                        | 445/977 (45.5)                                    | 440/974 (45.2)                                 |
| III                                                        | 268/977 (27.4)                                    | 257/974 (26.4)                                 |
| IV .                                                       | 29/977 (3.0)                                      | 19/974 (2.0)                                   |
| CCS angina class — no./total no. (%)¶                      |                                                   |                                                |
| No angina                                                  | 365/982 (37.2)                                    | 353/980 (36.0)                                 |
| 1                                                          | 169/982 (17.2)                                    | 193/980 (19.7)                                 |
| н                                                          | 273/982 (27.8)                                    | 253/980 (25.8)                                 |
| III                                                        | 139/982 (14.2)                                    | 142/980 (14.5)                                 |
| N                                                          | 36/982 (3.7)                                      | 39/980 (4.0)                                   |

| Type of Transfusion                                                               | Restrictive<br>Transfusion Threshold<br>(N = 1000) | Liberal<br>Transfusion Threshold<br>(N=1003) | Odds Ratio<br>(95% CI) | P Value |
|-----------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|------------------------|---------|
|                                                                                   | number                                             | (percent)                                    |                        |         |
| ≥1 Units of red cells transfused before randomiza-<br>tion — no. of patients (%)† | 250 (25.0)                                         | 264 (26.3)                                   |                        |         |
| Units of red cells transfused after randomization:                                |                                                    |                                              |                        |         |
| Total units transfused — no.                                                      | 1494                                               | 2494                                         |                        |         |
| Median — no.                                                                      | 1.0                                                | 2.0                                          |                        |         |
| Interquartile range                                                               | 0-2.0                                              | 1.8 3.0                                      |                        |         |
| Distribution — no. of patients (%)                                                |                                                    |                                              | 0.58 (0.54– 0.62)§     | < 0.001 |
| 0 units                                                                           | 466 (46.6)                                         | 78 (7.8)                                     |                        |         |
| 1 unit                                                                            | 193 (19.3)                                         | 341 (34.0)                                   |                        |         |
| 2 units                                                                           | 152 (15.2)                                         | 262 (26.1)                                   |                        |         |
| 3 units                                                                           | 66 (6.6)                                           | 141 (14.1)                                   |                        |         |
| 4 units                                                                           | 50 (5.0)                                           | 62 (6.2)                                     |                        |         |
| ≥5 units                                                                          | 73 (7.3)                                           | 119 (11.9)                                   |                        |         |
| Transfused red cells during entire index<br>admission — no. of patients (%)¶      | 637 (63.7)                                         | 952 (94.9)                                   |                        |         |
| Other transfusions — no. of patients (%) ¶                                        |                                                    |                                              |                        |         |
| Fresh-frozen plasma                                                               | 297 (29.7)                                         | 284 (28.3)                                   | 1.08 (0.88-1.33)       | 0.45    |
| Platelets                                                                         | 376 (37.6)                                         | 362 (36.1)                                   | 1.08 (0.89-1.31)       | 0.42    |
| Cryoprecipitate                                                                   | 99 (9.9)                                           | 102 (10.2)                                   | 0.99 (0.72-1.35)       | 0.95    |
| Activated factor used — no. of patients (%) ¶                                     | 7 (0.7)                                            | 5 (0.5)                                      | 1.41 (0.45-4.45)       | 0.56    |
| Human blood coagulation factor IX used — no. of patients (%) ¶                    | 52 (5.2)                                           | 48 (4.8)                                     | 1.21 (0.73-2.03)       | 0.46    |
| Severe nonadherence — no. of patients (%)                                         | 97 (9.7)                                           | 62 (6.2)                                     |                        |         |
| Any nonadherence — no. of patients (%)**                                          | 300 (30.0)                                         | 453 (45.2)                                   |                        |         |




I bars indicate standard deviations, which were calculated independently at each time point.



| Outcome                                                 | Restrictive Liberal<br>Transfusion Threshold Transfusion Threshold<br>(N= 1000) (N= 1003) |                | Estimated Treatment Effect                |        |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------|-------------------------------------------|--------|
|                                                         |                                                                                           |                | Odds Ratio or<br>Hazard Ratio<br>(95% CI) | PValue |
| Serious infection or ischemic event:<br>primary outcome |                                                                                           |                |                                           |        |
| Overall                                                 | 331/944 (35.1)                                                                            | 317/962 (33.0) | 1.11 (0.91–1.34)*                         | 0.30   |
| Infectious event+                                       | 238/936 (25.4)                                                                            | 240/954 (25.2) | 1.02 (0.83-1.26)*                         | 0.83   |
| Sepsis                                                  | 210/982 (21.4)                                                                            | 214/983 (21.8) |                                           |        |
| Wound infection                                         | 55/921 (6.0)                                                                              | 46/936 (4.9)   |                                           |        |
| Ischemic event                                          | 156/991 (15.7)                                                                            | 139/99 (114.0) | 1.16 (0.90-1.49)*                         | 0.26   |
| Permanent stroke                                        | 15/989 (1.5)                                                                              | 17/985 (1.7)   |                                           |        |
| Myocardial infarction                                   | 3/987 (0.3)                                                                               | 4/981 (0.4)    |                                           |        |
| Gut infarction                                          | 6/987 (0.6)                                                                               | 1/982 (0.1)    |                                           |        |
| Acute kidney injury                                     | 140/989 (14.2)                                                                            | 122/989 (12.3) |                                           |        |
| Stage 1                                                 | 49/989 (5.0)                                                                              | 40/989 (4.0)   |                                           |        |
| Stage 2                                                 | 39/989 (3.9)                                                                              | 35/989 (3.5)   |                                           |        |
| Stage 3                                                 | 50/989 (5.1)                                                                              | 46/989 (4.7)   |                                           |        |
| Secondary outcomes                                      |                                                                                           |                |                                           |        |
| No. of hours in ICU or high-<br>dependency unit‡        |                                                                                           |                |                                           |        |
| Median                                                  | 49.5                                                                                      | 45.9           | 0.97 (0.89–1.06)§                         | 0.53   |
| Interquartile range                                     | 21.9-99.7                                                                                 | 20.1-94.8      |                                           |        |
| No. of days in hospital¶                                |                                                                                           |                |                                           |        |
| Median                                                  | 7.0                                                                                       | 7.0            | 1.00 (0.92–1.10)§                         | 0.94   |
| Interquartile range                                     | 5.0-10.0                                                                                  | 5.0-10.0       |                                           |        |
| All-cause mortality at 90 days                          | 42/1000 (4.2)                                                                             | 26/1003 (2.6)  | 1.64 (1.00–2.67)§                         | 0.045  |
| Clinically significant pulmonary<br>complications       | 127/979 (13.0)                                                                            | 116/982 (11.8) | 1.11 (0.85–1.45)*                         | 0.45   |
| All-cause mortality at 30 days                          | 26/1000 (2.6)                                                                             | 19/1003 (1.9)  |                                           |        |



\* This value is an odds ratio.

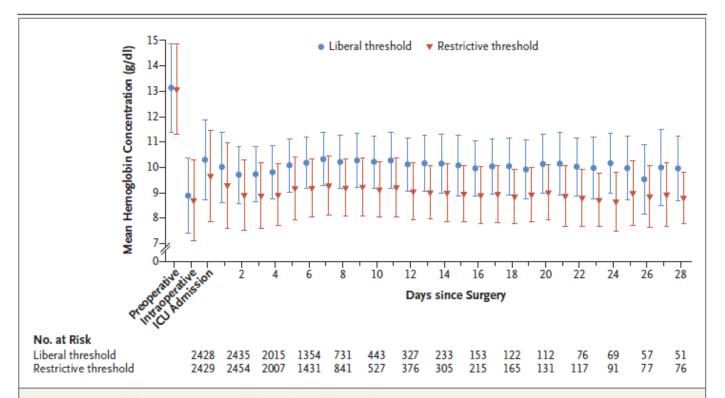


#### Figure 2. Subgroup Analyses.

The gray vertical lines represent the overall treatment estimate (solid line) and the 95% confidence interval (dashed lines) for the primary outcome as calculated for the entire analysis cohort. The sizes of the circles designating the point estimates reflect the sizes of the subgroups. The restrictive transfusion threshold for hemoglobin was less than 7.5 g per deciliter, and the liberal transfusion threshold was less than 9 g per deciliter. CABG denotes coronary-artery bypass grafting, COPD chronic obstructive pulmonary disease, GFR glomerular filtration rate, and LV left ventricular.

#### The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


### Restrictive or Liberal Red-Cell Transfusion for Cardiac Surgery

C.D. Mazer, R.P. Whitlock, D.A. Fergusson, J. Hall, E. Belley-Cote, K. Connolly,
B. Khanykin, A.J. Gregory, É. de Médicis, S. McGuinness, A. Royse, F.M. Carrier,
P.J. Young, J.C. Villar, H.P. Grocott, M.D. Seeberger, S. Fremes, F. Lellouche,
S. Syed, K. Byrne, S.M. Bagshaw, N.C. Hwang, C. Mehta, T.W. Painter, C. Royse,
S. Verma, G.M.T. Hare, A. Cohen, K.E. Thorpe, P. Jüni, and N. Shehata,
for the TRICS Investigators and Perioperative Anesthesia Clinical Trials Group\*

ABSTRACT

| Table 1. Baseline and Operative Characteristics.*   | Hb 7.5                            | Hb 9.5                        |
|-----------------------------------------------------|-----------------------------------|-------------------------------|
| Characteristic                                      | Restrictive Threshold<br>(N=2430) | Liberal Threshold<br>(N=2430) |
| Preoperative characteristics                        |                                   |                               |
| Age — yr                                            | 72±10                             | 72±10                         |
| Male sex — no. (%)                                  | 1553 (63.9)                       | 1586 (65.3)                   |
| Body-mass index†                                    | 28.1±6.0                          | 28.0±5.2                      |
| EuroSCORE I‡                                        | 7.9±1.8                           | 7.8±1.9                       |
| Previous cardiac surgery — no. (%)                  | 307 (12.6)                        | 280 (11.5)                    |
| Myocardial infarction in previous 90 days — no. (%) | 562 (23.1)                        | 601 (24.7)                    |
| Left ventricular function — no./total no. (%)§      |                                   |                               |
| Good                                                | 1485/2430 (61.1)                  | 1523/2427 (62.8)              |
| Moderately reduced                                  | 733/2430 (30.2)                   | 710/2427 (29.3)               |
| Poor                                                | 166/2430 (6.8)                    | 156/2427 (6.4)                |
| Very poor                                           | 46/2430 (1.9)                     | 38/2427 (1.6)                 |
| Diabetes mellitus — no. (%)                         | 646 (26.6)                        | 686 (28.2)                    |
| Treated hypertension — no. (%)                      | 1797 (74.0)                       | 1803 (74.2)                   |
| Emergency surgery — no. (%)                         | 37 (1.5)                          | 34 (1.4)                      |
| Renal function — no./total no. (%)¶                 |                                   |                               |
| Normal                                              | 1090/2332 (46.7)                  | 1071/2348 (45.6)              |
| Moderately impaired                                 | 857/2332 (36.7)                   | 866/2348 (36.9)               |
| Severely impaired                                   | 355/2332 (15.2)                   | 385/2348 (16.4)               |
| Use of dialysis                                     | 30/2332 (1.3)                     | 26/2348 (1.1)                 |
| Use of aspirin — no./total no. (%)                  | 1274/2428 (52.5)                  | 1293/2423 (53.4)              |
| Hemoglobin — g/dl                                   | 13.1±1.8                          | 13.1±1.7                      |
| Operative characteristics                           |                                   |                               |
| Type of surgery — no./total no. (%)                 |                                   |                               |
| CABG only                                           | 622/2429 (25.6)                   | 645/2430 (26.5)               |
| CABG and valve surgery                              | 464/2429 (19.1)                   | 472/2430 (19.4)               |
| CABG and other, nonvalve surgery                    | 205/2429 (8.4)                    | 203/2430 (8.4)                |
| Valve surgery only                                  | 703/2429 (28.9)                   | 716/2430 (29.5)               |
| Other, non-CABG surgery                             | 433/2429 (17.8)                   | 394/2430 (16.2)               |
| Duration of cardiopulmonary bypass — min            | 120±59                            | 121±57                        |
| Intraoperative tranexamic acid — no./total no. (%)  | 2219/2428 (91.4)                  | 2235/2428 (92.1)              |





#### Figure 1. Hemoglobin Concentration during the Trial Period.

The restrictive transfusion threshold was less than 7.5 g per deciliter intraoperatively and postoperatively, and the liberal transfusion threshold was less than 9.5 g per deciliter intraoperatively or postoperatively in the intensive care unit (ICU) or less than 8.5 g per deciliter on the non-ICU ward. I bars indicate the standard deviation.

| Table 3. Primary and Secondary Outcomes in the Per-Proto  | col Population.                   |                                 |                                        |
|-----------------------------------------------------------|-----------------------------------|---------------------------------|----------------------------------------|
| Characteristic                                            | Restrictive Threshold<br>(N=2430) | Liberal Threshold<br>(N = 2430) | Odds Ratio or Hazard Ratio<br>(95% CI) |
| Primary outcome                                           |                                   |                                 |                                        |
| Composite-outcome event — no./total no. (%)               | 276/2428 (11.4)                   | 303/2429 (12.5)                 | 0.90 (0.76-1.07)                       |
| Death — no./total no. (%)                                 | 74/2427 (3.0)                     | 87/2429 (3.6)                   | 0.85 (0.62-1.16)                       |
| Stroke — no./total no. (%)                                | 45/2428 (1.9)                     | 49/2429 (2.0)                   | 0.92 (0.61-1.38)                       |
| Myocardial infarction — no./total no. (%)                 | 144/2428 (5.9)                    | 144/2429 (5.9)                  | 1.00 (0.79-1.27)                       |
| New-onset renal failure with dialysis — no./total no. (%) | 61/2428 (2.5)                     | 72/2429 (3.0)                   | 0.84 (0.60-1.19)                       |
| Secondary outcomes                                        |                                   |                                 |                                        |
| Length of stay in ICU                                     |                                   |                                 |                                        |
| No. of patients with data                                 | 2422                              | 2418                            |                                        |
| Median — days                                             | 2.1                               | 1.9                             | 0.89 (0.84-0.94)*                      |
| Interquartile range — days                                | 1.0-4.0                           | 1.0-3.9                         |                                        |
| Length of stay in hospital                                |                                   |                                 |                                        |
| No. of patients with data                                 | 2419                              | 2419                            |                                        |
| Median — days                                             | 8.0                               | 8.0                             | 0.93 (0.88-0.99)*                      |
| Interquartile range — days                                | 7.0-13.0                          | 7.0-12.0                        |                                        |
| Duration of mechanical ventilation                        |                                   |                                 |                                        |
| No. of patients with data                                 | 2416                              | 2421                            |                                        |
| Median — days                                             | 0.38                              | 0.36                            | 0.94 (0.89-1.00)*                      |
| Interquartile range — days                                | 0.22-0.75                         | 0.22-0.71                       |                                        |
| Prolonged low-output state — no./total no. (%)†           | 994/2429 (40.9)                   | 987/2430 (40.6)                 | 1.01 (0.90-1.14)                       |
| Infection — no./total no. (%)                             | 121/2428 (5.0)                    | 101/2429 (4.2)                  | 1.21 (0.92-1.58)                       |
| Bowel infarction — no./total no. (%)                      | 6/2428 (0.2)                      | 5/2429 (0.2)                    | 1.20 (0.37-3.94)                       |
| Acute kidney injury — no./total no. (%)                   | 792/2332 (34.0)                   | 797/2348 (33.9)                 | 1.00 (0.89-1.13)                       |
| Seizure — no./total no. (%)                               | 50/2428 (2.1)                     | 42/2429 (1.7)                   | 1.20 (0.79–1.81)                       |
| Delirium — no./total no. (%)                              | 306/2428 (12.6)                   | 264/2429 (10.9)                 | 1.18 (0.99–1.41)                       |
| Encephalopathy — no./total no. (%)                        | 26/2428 (1.1)                     | 22/2429 (0.9)                   | 1.18 (0.67–2.10)                       |

| Subgroup                                 | No. of<br>Patients | Restrictive<br>Threshold<br>no. of patients with | Liberal<br>Threshold<br>event/total no. (%) | Unad                  | justed Odds Ratio (95% (                      | CI)              | P Value for<br>Interaction |
|------------------------------------------|--------------------|--------------------------------------------------|---------------------------------------------|-----------------------|-----------------------------------------------|------------------|----------------------------|
| Age                                      |                    |                                                  |                                             |                       |                                               |                  | 0.004                      |
| <75 yr                                   | 2426               | 152/1218 (12.5)                                  | 131/1208 (10.8)                             |                       | i                                             | 1.17 (0.91-1.50) |                            |
| ≥75 yr                                   | 2431               | 124/1210 (10.2)                                  | 172/1221 (14.1)                             | •                     |                                               | 0.70 (0.54-0.89) |                            |
| Sex                                      |                    |                                                  |                                             |                       |                                               |                  | 0.45                       |
| Female                                   | 1719               | 99/876 (11.3)                                    | 113/843 (13.4)                              |                       | · • · · · · ·                                 | 0.82 (0.62-1.10) |                            |
| Male                                     | 3138               | 177/1552 (11.4)                                  | 190/1586 (12.0)                             |                       |                                               | 0.95 (0.76-1.18) |                            |
| Diabetes                                 |                    | , , ,                                            | , , , ,                                     |                       |                                               |                  | 0.75                       |
| No                                       | 3526               | 200/1783 (11.2)                                  | 211/1743 (12.1)                             |                       | <u>,                                     </u> | 0.92 (0.75-1.13) |                            |
| Yes                                      | 1331               | 76/645 (11.8)                                    | 92/686 (13.4)                               | <b>⊢</b>              |                                               | 0.86 (0.62-1.19) |                            |
| Creatinine level                         |                    |                                                  |                                             |                       |                                               |                  | 0.71                       |
| ≤2.26 mg/dl                              | 4685               | 253/2348 (10.8)                                  | 277/2337 (11.9)                             |                       | ⊫_ <b>⊕</b> 4                                 | 0.90 (0.75-1.08) |                            |
| >2.26 mg/dl                              | 172                | 23/80 (28.7)                                     | 26/92 (28.3)                                | H                     |                                               | 1.02 (0.53-1.99) |                            |
| Chronic pulmonary<br>disease             |                    |                                                  |                                             |                       |                                               |                  | 0.67                       |
| No                                       | 4057               | 229/2023 (11.3)                                  | 249/2034 (12.2)                             |                       | <b>⊢</b> ● <b>↓</b>                           | 0.92 (0.76-1.11) |                            |
| Yes                                      | 800                | 47/405 (11.6)                                    | 54/395 (13.7)                               | L                     |                                               | 0.83 (0.55-1.26) |                            |
| Surgery category                         |                    |                                                  |                                             |                       |                                               |                  | 0.22                       |
| Non-CABG                                 | 2247               | 111/1138 (9.8)                                   | 136/1109 (12.3)                             | <b>—</b> —            | + ↓                                           | 0.77 (0.59-1.01) |                            |
| CABG only                                | 1266               | 57/621 (9.2)                                     | 51/645 (7.9)                                |                       |                                               | 1.18 (0.79-1.75) |                            |
| CABG+ other                              | 1344               | 108/669 (16.1)                                   | 116/675 (17.2)                              | F                     |                                               | 0.93 (0.70-1.24) |                            |
| Left ventricular function                |                    |                                                  |                                             |                       |                                               |                  | 0.78                       |
| Very poor                                | 84                 | 6/46 (13.0)                                      | 6/38 (15.8)                                 | <b>F</b>              | · · · · · · · · · · · · · · · · · · ·         | 0.80 (0.24-2.72) |                            |
| Poor                                     | 322                | 21/166 (12.7)                                    | 21/156 (13.5)                               | <b></b>               |                                               | 0.93 (0.49-1.78) |                            |
| Moderate                                 | 1441               | 88/731 (12.0)                                    | 89/710 (12.5)                               | F                     |                                               | 0.95 (0.70-1.31) |                            |
| Good                                     | 3010               | 161/1485 (10.8)                                  | 187/1525 (12.3)                             | F                     |                                               | 0.87 (0.69-1.09) |                            |
| Preoperative hemoglobir<br>concentration | 1                  |                                                  |                                             |                       |                                               |                  | 0.54                       |
| <12.0 g/dl                               | 1149               | 84/593 (14.2)                                    | 93/556 (16.7)                               |                       | · • · · · ·                                   | 0.82 (0.60-1.13) |                            |
| ≥12.0 g/dl                               | 3708               | 192/1835 (10.5)                                  | 210/1873 (11.2)                             |                       |                                               | 0.92 (0.75-1.14) |                            |
|                                          |                    |                                                  | C                                           | Restrictive Threshold | 1.00 2.00<br>Liberal Threshold                |                  |                            |
|                                          |                    |                                                  |                                             | Better                | Better                                        |                  |                            |

#### RESULTS

The primary outcome occurred in 11.4% of the patients in the restrictive-threshold group, as compared with 12.5% of those in the liberal-threshold group (absolute risk difference, -1.11 percentage points; 95% confidence interval [CI], -2.93 to 0.72; odds ratio, 0.90; 95% CI, 0.76 to 1.07; P<0.001 for noninferiority). Mortality was 3.0% in the restrictive-threshold group and 3.6% in the liberal-threshold group (odds ratio, 0.85; 95% CI, 0.62 to 1.16). Red-cell transfusion occurred in 52.3% of the patients in the restrictive-threshold group, as compared with 72.6% of those in the liberal-threshold group (odds ratio, 0.41; 95% CI, 0.37 to 0.47). There were no significant between-group differences with regard to the other secondary outcomes.

#### CONCLUSIONS

In patients undergoing cardiac surgery who were at moderate-to-high risk for death, a restrictive strategy regarding red-cell transfusion was noninferior to a liberal strategy with respect to the composite outcome of death from any cause, myocardial infarction, stroke, or new-onset renal failure with dialysis, with less blood transfused. (Funded by the Canadian Institutes of Health Research and others; TRICS III ClinicalTrials.gov number, NCT02042898.)



| Age<br>< 45 years<br>45–54 years<br>55–64 years<br>65–74 years<br>75–84 years<br>85+ years<br>85+ years           | N<br>109<br>184<br>533<br>1600<br>2202<br>229 | Restrictive<br>10/57 (17.5)<br>17/92 (18.5)<br>28/272 (10.3)<br>97/797 (12.2)<br>112/1084 (10.2)<br>12/116 (10.3) | Liberal<br>5/52 (9.6)<br>11/92 (12)<br>20/261 (7.7)<br>95/803 (11.8)<br>151/1108 (13.6)<br>21/113 (18.6) | Unadjusted OR (95% Cl)<br>2.00 (0.64–6.30)<br>1.67 (0.73–3.79)<br>1.38 (0.76–2.52)<br>1.03 (0.76–1.40)<br>0.72 (0.56–0.94)<br>0.51 (0.24–1.08) | p-value for<br>interaction<br>0.00044 |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Female<br>Male                                                                                                    | 1719<br>3138                                  | 99/876 (11.3)<br>177/1552 (11.4)                                                                                  | 113/843 (13.4)<br>190/1586 (12)                                                                          | 0.82 (0.62–1.10)<br>0.95 (0.76–1.18)                                                                                                           | 0.451                                 |  |
| Diabetes<br>No<br>Yes                                                                                             | 3526<br>1331                                  | 200/1783 (11.2)<br>76/645 (11.8)                                                                                  | 211/1743 (12.1)<br>92/686 (13.4)                                                                         | 0.92 (0.75–1.13)<br>0.86 (0.62–1.19)                                                                                                           | 0.753                                 |  |
| Renal Function<br>Moderate/Normal CrCl >=50 ml/min<br>Severe/Dialysis CrCl <50 ml/min<br>Preexisting Pulm Disease | 4003<br>854                                   | 204/2016 (10.1)<br>72/412 (17.5)                                                                                  | 210/1987 (10.6)<br>93/442 (21)                                                                           | 0.95 (0.77–1.16)<br>0.79 (0.56–1.12)                                                                                                           | 0.388                                 |  |
| No<br>Yes                                                                                                         | 4057<br>800                                   | 229/2023 (11.3)<br>47/405 (11.6)                                                                                  | 249/2034 (12.2)<br>54/395 (13.7)                                                                         | 0.92 (0.76–1.11)<br>0.83 (0.55–1.26)                                                                                                           | 0.674                                 |  |
| Surgery Category<br>CABG-<br>CABG Only<br>CABG+                                                                   | 2247<br>1266<br>1344                          | 111/1138 (9.8)<br>57/621 (9.2)<br>108/669 (16.1)                                                                  | 136/1109 (12,3)<br>51/645 (7.9)<br>116/675 (17.2)                                                        | 0.77 (0.59–1.01)<br>1.18 (0.79–1.75)<br>0.93 (0.70–1.24)                                                                                       | 0,219                                 |  |
| LV Function<br>Very Poor<br>Poor<br>Moderate<br>Good                                                              | 84<br>322<br>1441<br>3010                     | 6/46 (13)<br>21/166 (12.7)<br>88/731 (12)<br>161/1485 (10.8)                                                      | 6/38 (15.8)<br>21/156 (13.5)<br>89/710 (12.5)<br>187/1525 (12.3)                                         | 0.80 (0.24-2.72)<br>0.93 (0.49-1.78)<br>0.95 (0.70-1.31)<br>0.87 (0.69-1.09)                                                                   | 0.778 🔸                               |  |
| Preoperative Hemoglobin Concentrati<br>< 10.0g/dl<br>10.0 – 12.0g/dl<br>> 12.0g/dl                                | on<br>229<br>1006<br>3622                     | 31/120 (25.8)<br>57/517 (11)<br>188/1791 (10.5)                                                                   | 21/109 (19.3)<br>79/489 (16.2)<br>203/1831 (11.1)                                                        | 1.46 (0.78–2.73)<br>0.64 (0.45–0.93)<br>0.94 (0.76–1.16)                                                                                       | 0.945                                 |  |

Favors Restrictive Favors Liberal Odds Ratio



# 1. ARE TRANSFUSIONS HARMFULIN SURGERY?

# NO (unless massive?)

THERE IS NOT A SINGLE RANDOMIZED CONTROLLED TRIAL WHERE A LIBERAL STRATEGY ARM HAD A SIGNIFICANT GREATER RATE OF EVENTS, SAME FOR POOLED DATA



# QUESTIONS

# SO, IF IT IS TRUE THAT THERE ARE NO DANGEROUS RBC TRANSFUSIONS...

IT IS TRUE AS WELL THAT THERE ARE MANY INAPPROPRIATE TRANSFUSIONS A RESTRICTIVE STRATEGY IS NOT INFERIOR TO A LIBERAL STRATEGY, AND THEREFORE AVOIDS UNNECESSARY TREATMENTS

A LIBERAL STRATEGY DOES NOT INDUCE ANY COMPLICATION HOWEVER, IN MANY CASES MAY TRIGGER AVOIDABLE TREATMENT





- 1. ARE TRANSFUSIONS HARMFUL IN SURGERY?
- 2. WHAT IS THE LEVEL OF THE EVIDENCE?
- 3. WHAT IS «liberal» and WHAT IS «restrictive»?



| Study N Age                            | Age  |                     |                 | Strategy of blood transfusion                   |               |               |               | Units of RBC transfusion<br>or transfusion rate |               |               |
|----------------------------------------|------|---------------------|-----------------|-------------------------------------------------|---------------|---------------|---------------|-------------------------------------------------|---------------|---------------|
|                                        |      | Restrictive Control |                 | Control Setting                                 |               | Restrictive   |               | Control                                         |               | Control       |
|                                        |      |                     |                 |                                                 | Triggered Hb  | Observed Hb   | Triggered Hb  | Observed Hb                                     |               |               |
| Bracey et al.1999 [12]                 | 428  | 61±11               | 62±11           | Elective CABG                                   | Hb < 8 g/dl   | 9.1 g/dl      | Hb<9 g/dl     | 9.7 g/dl                                        | $0.9 \pm 1.5$ | $1.4 \pm 1.8$ |
| Murphy et al. 2007 [16]                | 321  | NS                  | NS              | Elective or urgent cardiac surgery              | Hb < 7 g/dl   | NS            | Hb<8 g/dl     | NS                                              | NS            | NS            |
| Hajjar et al. 2010 [ <mark>13</mark> ] | 502  | 58.6±12.5           | $60.7 \pm 12.5$ | Elective cardiac surgery                        | Hct < 24%     | 9.6 g/dl      | Hct < 30%     | 10.7 g/dl                                       | 0 (0-2)       | 2 (1–3)       |
| Shehata et al. 2012 [15]               | 50   | 67.2±11.2           | 68.8±9.2        | Cardiac surgery with CARE score of 3 or 4       | Hb < 7.5 g/dl | 9.1 g/dl      | Hb<10 g/dl    | 10.7 g/dl                                       | 11 (44)       | 17 (68)       |
| Murphy et al. 2015 [14]                | 2003 | 69.9(63.1 -76.0)    | 70.8(64.1-76.7) | Elective or urgent cardiac surgery              | Hb < 7.5 g/dl | 9.0 g/dl      | Hb<9g/dl      | 9.8 g/dl                                        | 1 (0–2)       | 2 (1–3)       |
| Koch et al. 2017 [10]                  | 717  | $59 \pm 15$         | 60±13           | Elective CABG or HVR                            | Hct < 24%     | 28%           | Hct < 28%     | 30%                                             | 195 (54)      | 265 (75)      |
| Mazer et al. 2017 [9]                  | 4860 | $72 \pm 10$         | 72±10           | Cardiac surgery with a EuroSCORE I of 6 or more | Hb < 7.5 g/dl | Hb < 8.5 g/dl | Hb < 9.5 g/dl | 10.5 g/dl?                                      | 2 (1-4)       | 3 (2–5)       |

CABG coronary artery bypass grafting, Hb hemoglobin, Hct hemotocrit, HVR heart valve replacement, NS normal saline

# TRANSFUSION RATE RF

# Bracey Shehata Hajjar (TRA Mazer (7, 64%) Koch (20, 64%)

E ARM:





mic mauonal journal of cardiology XXX (XXXX) XXX

#### Contents lists available at ScienceDirect

International Journal of Cardiology

journal homepage: www.elsevier.com/locate/ijcard

# Patient blood management in cardiac surgery: The "Granducato algorithm"☆☆☆

Sabino Scolletta <sup>a,b,c,\*</sup>, Paolo Simioni <sup>d,e</sup>, Valter Campagnolo <sup>f</sup>, Michele Celiento <sup>g</sup>, Paolo Fontanari <sup>f</sup>, Alberto Guadagnucci <sup>h</sup>, Fabio Guarracino <sup>i</sup>, Dorela Haxhiademi <sup>h</sup>, Rita Paniccia <sup>j</sup>, Felicetta Simeone <sup>k</sup>, Marco Ranucci <sup>l,\*\*</sup>, The Granducato Research Group:

Carlo Bartolozzi<sup>m</sup>, Pietro Bertini<sup>o</sup>, Cecilia Bianchi<sup>p</sup>, Debora Castellani<sup>p</sup>, Claudia Cariello<sup>o</sup>, Paolo Del Sarto<sup>n</sup>, Luca Marchetti<sup>p</sup>, Daniele Marianello<sup>p</sup>, Cornel Marusceac<sup>n</sup>, Alessandra Pastorino<sup>p</sup>, Marco Solinas<sup>q</sup>



CARDIOLOG

### **TRANSFUSION PROTOCOL**

| Hb (g/dL) | HCT (%)  | <b>RBC transfusion</b>               |
|-----------|----------|--------------------------------------|
| ≥ 10      | ≥30      | NO                                   |
| ≥ 8, <10  | ≥24, <30 | Only in case of clinical indication* |
| ≥7, <8    | ≥21, <24 | Could be considered                  |
| <7        | <21      | YES                                  |

\*Clinical indications:

- Lactates > 4mMol/L
- SVO<sub>2</sub> < 65%
- $O_2 ER > 40\%$
- Low C.O. (despite inotropic drugs / IABP)
- Active bleeding
- End organ ischemia
- Age

### Algoritmo condiviso per la gestione dell'emorragia pz CCH

#### Table 2

Transfusion needs and general outcome of the two groups.

| Variable                         | Before G-PBMa $N = 1955$ , year 2014 | After G-PBMa<br>N = 1884, year 2016 | Relative risk or mean difference<br>(95% confidence interval) | Р     |
|----------------------------------|--------------------------------------|-------------------------------------|---------------------------------------------------------------|-------|
| Transfusion                      |                                      |                                     |                                                               |       |
| Any kind                         | 753 (38.5)                           | 600 (31.8)                          | 0.75 (0.65-0.85)                                              | 0.001 |
| Red blood cells                  | 725 (37.1)                           | 583 (30.9)                          | 0.76 (0.66-0.87)                                              | 0.001 |
| Fresh frozen plasma              | 251 (12.8)                           | 102 (5.4)                           | 0.39 (0.31-0.49)                                              | 0.001 |
| Platelet concentrate             | 168 (8.6)                            | 85 (4.5)                            | 0.50 (0.38-0.66)                                              | 0.001 |
| Transfused volume (units)        |                                      |                                     |                                                               |       |
| Red blood cells                  | 1.17 (2.25)                          | 0.77 (1.57)                         | 0.41 (0.28-0.53)                                              | 0.001 |
| Fresh frozen plasma              | 0.63 (2.1)                           | 0.15 (0.84)                         | 0.48 (0.38-0.58)                                              | 0.001 |
| Platelet concentrate             | 0.13 (0.57)                          | 0.05 (0.27)                         | 0.15 (0.05-0.10)                                              | 0.001 |
| Chest drain blood loss (mL/12 h) | 320 (220-480)                        | 300 (200-500)                       | N/A                                                           | 0.020 |
| Surgical re-exploration          | 93 (4.8)                             | 80 (4.3)                            | 0.90 (0.66-1.21)                                              | 0.489 |
| ntensive care unit stay (days)   | 1 (1-3)                              | 1 (1-2)                             | N/A                                                           | 0.168 |
| Hospital stay (days)             | 7 (6-11)                             | 7 (6-10)                            | N/A                                                           | 0.001 |
| Hospital mortality               | 73 (3.7)                             | 68 (3.6)                            | 0.96 (0.69-1.21)                                              | 0.837 |



### THE GRANDUCATO PATIENT BLOOD MANAGEMENT ALGORITHM

#### PREOPERATIVE

- Correct preoperative absolute iron deficiency anemia with ferrocarboxymalthose; consider EPO for functional iron deficiency or CRD anemia
- Consider RBC transfusion in severe anemia (Hb < 10 g/dL)</li>
- ASPIRIN: do not discontinuate
- P2Y<sub>12</sub> inhibitors: discontinue
  - TICAGRELOR 3 days CLOPIDOGREL 5 days PRASUGREL 7 days TICOPLIDINE 7 days
- If Multiplate<sup>®</sup> available; admit to surgery regardless of withdrawal time if ADPtest ≥30 U
- Stop warfarin, bridge with LMWH and admit to surgery when the INR ≤ 1.5
- Discontinue DOACs at least 48 hours before surgery. Apply longer discontinuation times (up to 96 hours) based on creatinine clearance. Consider direct titration with diluted thrombin time (dabigatran) or calibrated anti FXa activity (rivaroxaban, apixaban, edoxaban)
- Stop LMWH at least 12 hours before surgery
- Stop fondaparinux at least 24 hours before surgery. Longer discontinuation time based on serum creatinine clearance. Consider direct titration with calibrated Anti FXa activity

#### **INTRAOPERATIVE**

- Always use tranexamic acid according to the institutional protocol, however not less than a total dose of 30 mg/kg
- Anticoagulation: to establish the heparin dose, use Heparin Monitoring Systems if available, and start CPB at an ACT > 450 seconds
- Reduce intraoperative hemodilution as much as possible, using retro-prime, vacuum assisted venous return, and an ideal CPB priming volume target at 1,000 mL. Avoid hydroxyethyl starches in the priming.
- Consider RBC transfusion during CPB if the HCT < 21% and the SvO<sub>2</sub> < 68%
- Always transfuse RBC if the HCT on CPB < 18%</li>
- Establish the protamine dose using Heparin Monitoring Systems is available; otherwise start with a 1:1 ratio protamine:heparin loading dose.
- Use of cell saver and ultra-filtration according to the local policies.

#### POST-CARDIOPULMONARY BYPASS and ICU

- Apply the following VET-based bleeding management in actively bleeding patients
- Protamine (25-50 mg) if CT Intem > 300 and CT Heptem < 80% CT Intem (ROTEM®) or R time at TEG® with heparinase is 3 minutes shorter than R time standard
- Fibrinogen concentrate (2 grams) if Fibtem MCF < 8 mm or Functional Fibrinogen < 6 mm. Target value Fibtem MCF 14 mm or Clauss fibrinogen 2.5 g/L
- Desmopressin 0.3 μg /Kg and/or Platelet concentrate transfusion (1 unit) when fibrinogen is normalized and one of the following: platelet count < 100,000 cells/ μL; P2Y<sub>12</sub> inhibitors not whitdawn; ADPtest < 12 U</li>
- Additional dose of tranexamic acid + 1 gram fibrinogen concentrate if signs of hyperfibrinolysis at VET
- Prothrombin complex concentrate (better 4factors) 20 IU/kg if CT Extem > 90 seconds or R time at TEG with heparinase > 15 minutes. Consider FFP as second option only.
- Uncontrolled, life-threating bleeding: FFP 15 mL/kg; normalize platelet count, administer fibrinogen concentrate to a target Fibtem MCF of 22 mm or Clauss fibrinogen level 3.5 g/L
- 7. If ongoing bleeding with negative VET tests, consider surgical re-exploration

ANEMIA CORRECTION BLOOD-SAVING MEASURES BLEEDING CONTROL

### PREOPERATORIO

# Correzione anemia pre-operatoria (se valutata almeno 2 settimane prima della chirurgia)

| Condizione                                                                                                                          | Intervento suggerito                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Anemia da deficit di ferro (assoluto):<br>Saturazione transferrina < 34%<br>Ferritina < 100 ng/ml                                   | Ferrocarbossimaltosio e.v.<br>500 mg (se Sat Transferrina 20-<br>33%)<br>1000 mg (se Sat Transferrina <<br>20%)                                 |
| Anemia da deficit di ferro (funzionale):<br>Saturazione transferrina < 34%<br>Ferritina ≥ 100 ng/ml<br>Aumento indici infiammazione | Ferrocarbossimaltosio e.v.<br>500 mg (se Sat Transferrina 20-<br>33%)<br>1000 mg (se Sat Transferrina <<br>20%)<br>Eritropoietina 40.000 U s.c. |
| Anemia da insufficienza renale cronica<br>Saturazione transferrina ≥ 34%<br>Clearance creatinina > 60 ml/min/1.73m <sup>2</sup>     | Eritropoietina 40.000 U s.c.                                                                                                                    |
| Anemia grave (Hb < 10 g/dL)                                                                                                         | Considerare trasfusione globuli<br>rossi prima della CEC                                                                                        |

#### **INTRAOPERATORIO – Post protamina- sanguinamento microvascolare**

| Step                                                                                 | Se ROTEM o TEG                                                                                                                                                                                    | Trattamento                                                                                                                              |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1) Eparina residua                                                                   | CT INTEM >300" e CT HEPTEM/CT INTEM <0.8                                                                                                                                                          |                                                                                                                                          |
|                                                                                      | R Hep < 3' vs R standard                                                                                                                                                                          | 25-50 mg protamina                                                                                                                       |
| <b>2) Fibrinogeno</b><br>(se CEC < 90' effettuare i<br>test)                         | FIBTEM MCF < 8 mm                                                                                                                                                                                 | Fibrinogeno Concentrato 2 g ,<br>ripetibile (target FIBTEM 14mm,<br>Fibrinogenemia Clauss 250 mg/dL)                                     |
|                                                                                      | FF < 8 mm                                                                                                                                                                                         |                                                                                                                                          |
| 3) Piastrine                                                                         | Se Fibrinogeno nella norma e 1 dei seguenti:<br>- PLT preoperatorie <100.000/μL<br>- Inibitori P2Y <sub>12</sub> non sospesi nei tempi consigliati<br>- ADP test Multiplate postoperatorio < 12 U | Desmopressina 0.3 µg /Kg<br>Se permane sanguinamento<br>microvascolare, 1 unità Piastrine<br>concentrate                                 |
| 4) Iperfibrinolisi                                                                   | Test viscoelastici significativi                                                                                                                                                                  | Acido tranexamico + Fibrinogeno<br>Concentrato                                                                                           |
| <b>5) Generazione</b><br><b>trombina</b> (dopo<br>eventuali correzioni<br>punti 2-4) | CT EXTEM > 90"                                                                                                                                                                                    | 1° scelta: PCC 20UI/kg (preferibile 4                                                                                                    |
|                                                                                      | R Hep >15'0"                                                                                                                                                                                      | Fattori)<br>2° scelta: FFP 15 mL/kg                                                                                                      |
| 6)                                                                                   | Se Fibrinogeno e PLT normali/corretti ed<br>emorragia non controllata con pericolo di vita                                                                                                        | Mantenimento volemia con FFP +<br>ulteriore correzione con Fibrinogeno<br>(target FIBTEM >22mm, Clauss >350<br>mg/dL) + eventuale rFVIIa |
| 7)                                                                                   | Se parametri normali/corretti                                                                                                                                                                     | Emostasi chirurgica                                                                                                                      |

### Algoritmo condiviso per la gestione dell'emorragia pz CCH

# COMING SOON ...

### GRANDUCATO II

# LIBERAL VS RESTRICTIVE BLEEDING CONTROL ALGORITHM

# NON-INFERIORITY TRIAL

Restrictive targets (i.e. FIBTEM < 6 mm) vs Liberal targets (i.e. FIBTEM < 9 mm) for pro-coagulants administration