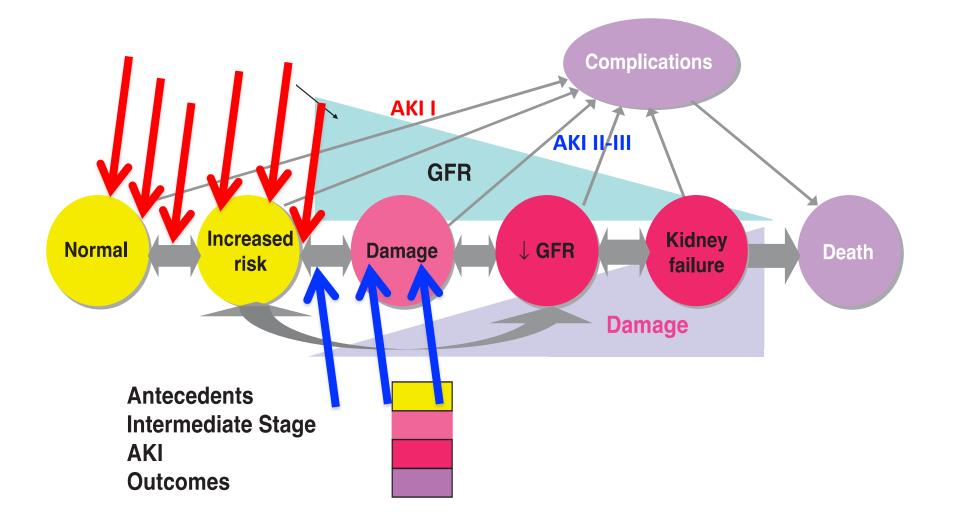


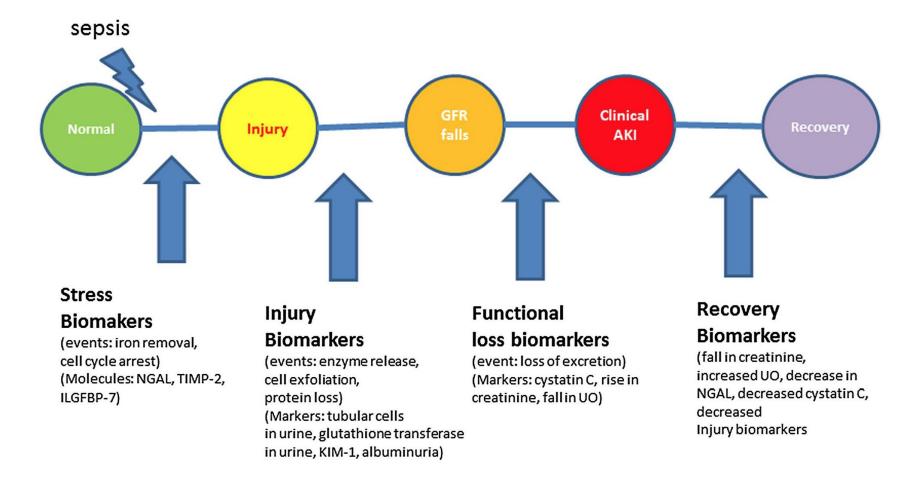
di Cardiologia Pediatrica

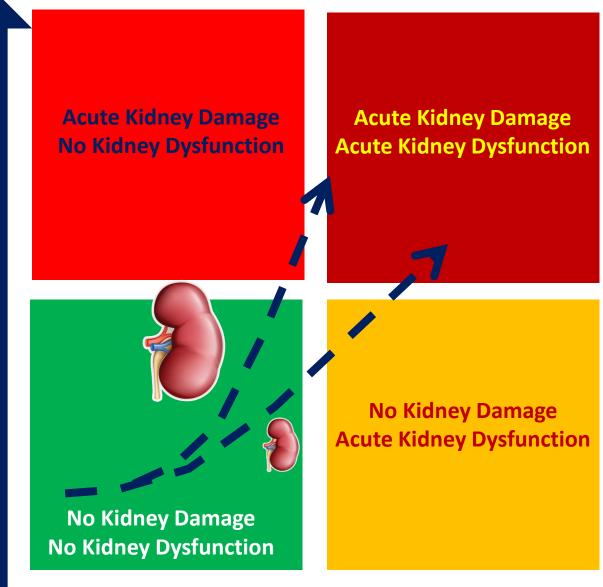
BIOMARKERS - OUTLINE

The framework

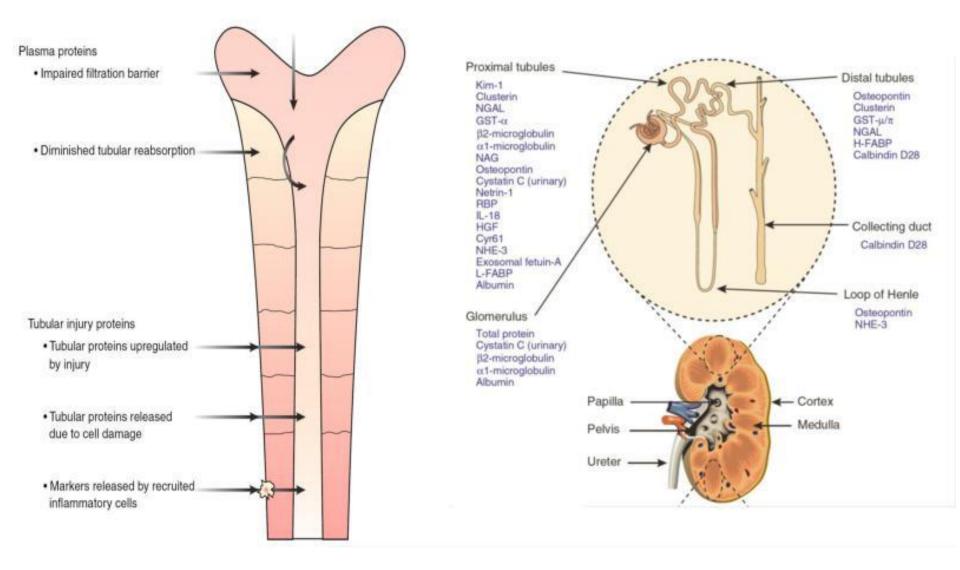
Renal BIOMARKERS CysC NGAL TIMP2-IGFBP7

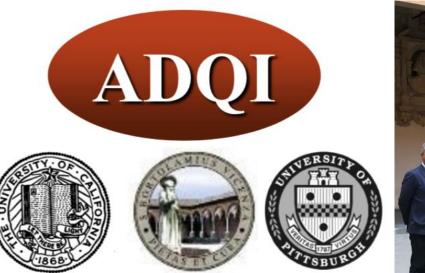

Current evidence


Classifications detect function not damage.....


Classifications detect function not damage.....

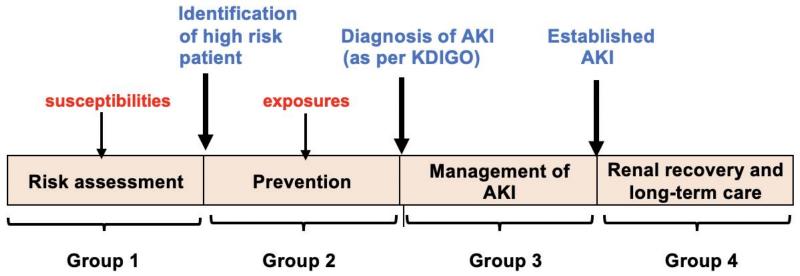
 These biomarkers may also help change the definition of AKI in the future and contribute to a better understanding, diagnosis, prevention, and treatment of septic AKI.

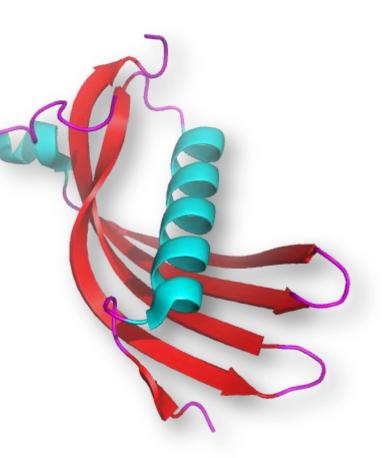

Vandenberghe W et al. Curr Opin Anesthesiol 2017, 30:66–75



FUNCTIONAL BIOMARKERS (sCr – UO – Cys C)

A: Potential mechanisms for kidney damage biomarkers appearance in serum or urine


B: Source and site specificity of kidney damage biomarkers


ADQI XXIII Abano Terme 30 Maggio-2 Giugno 2019

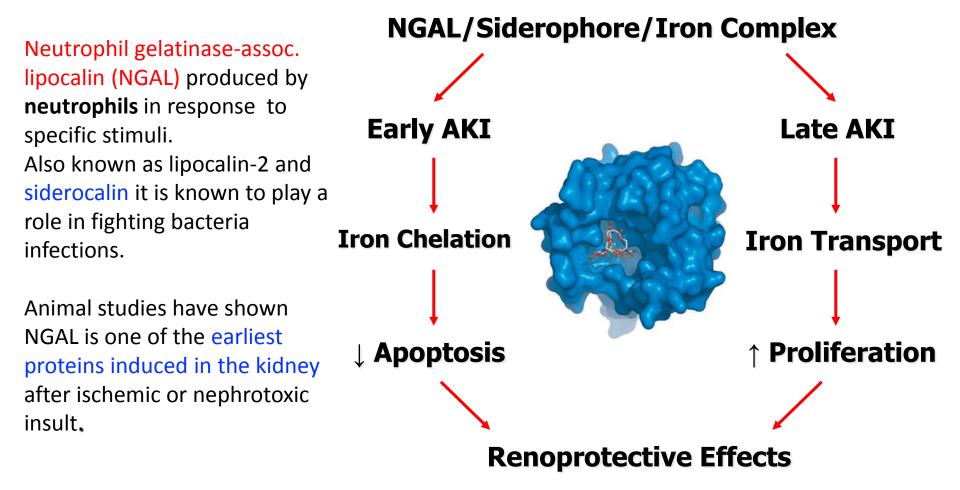
Biomarkers in AKI: CysC

CYSTATIN C

In humans, all cells with a nucleus (cell core containing the DNA) produce cystatin C as a chain of 120 amino acids. It is found in virtually all tissues and body fluids. It is a potent inhibitor of lysosomal proteinases and probably one of the most important extracellular inhibitors of cysteine proteases

Cystatin C levels are less dependent on age, sex, race and muscle mass compared to creatinine. It is not secreted by tubular cells

Biomarkers in AKI: NGAL


NEUTROPHIL GELATINASE ASSOCIATED LIPOCALIN

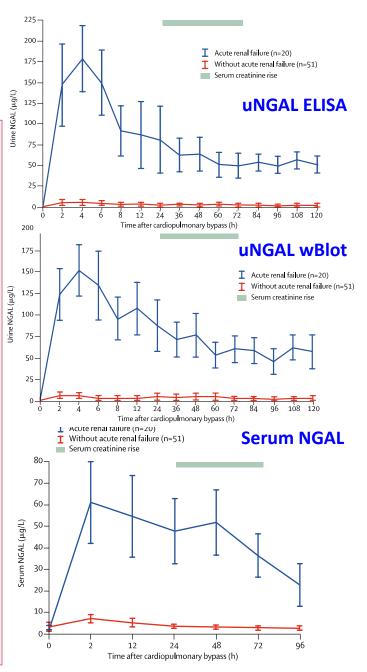
 ✓ In bloodstream as a 25-kDa monomer, as a 45-kDa disulphidelinked homodimer and as a 135-kDa heterodimer
 ✓ Produced in bone marrow, colon, trachea, lung and kidney epithelium

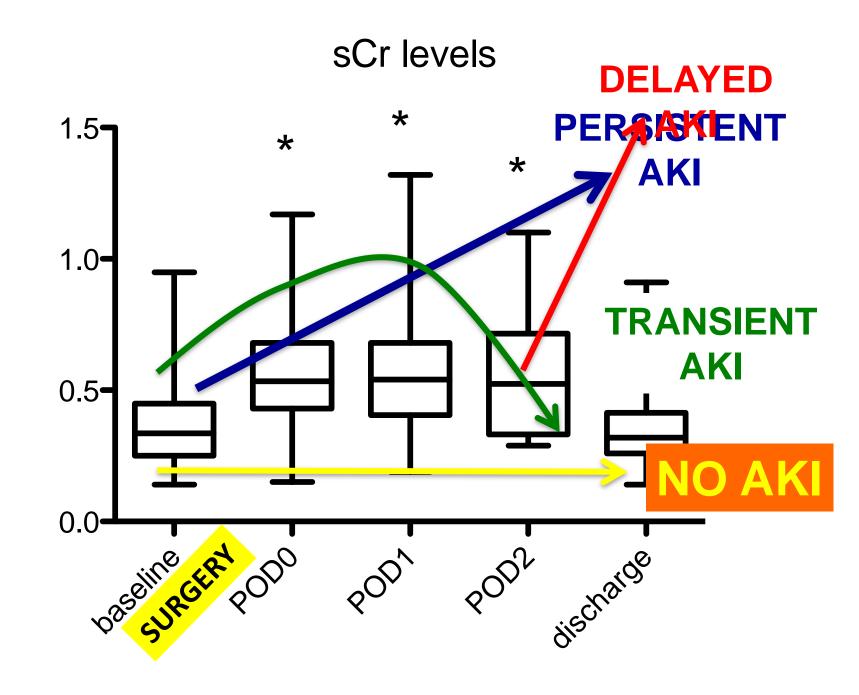
Activated neutrophils mainly release homodimeric NGAL and to a lesser extent the monomeric form.

In contrast, stressed kidney epithelial cells predominantly secrete monomeric NGAL apparently unable to form dimers.

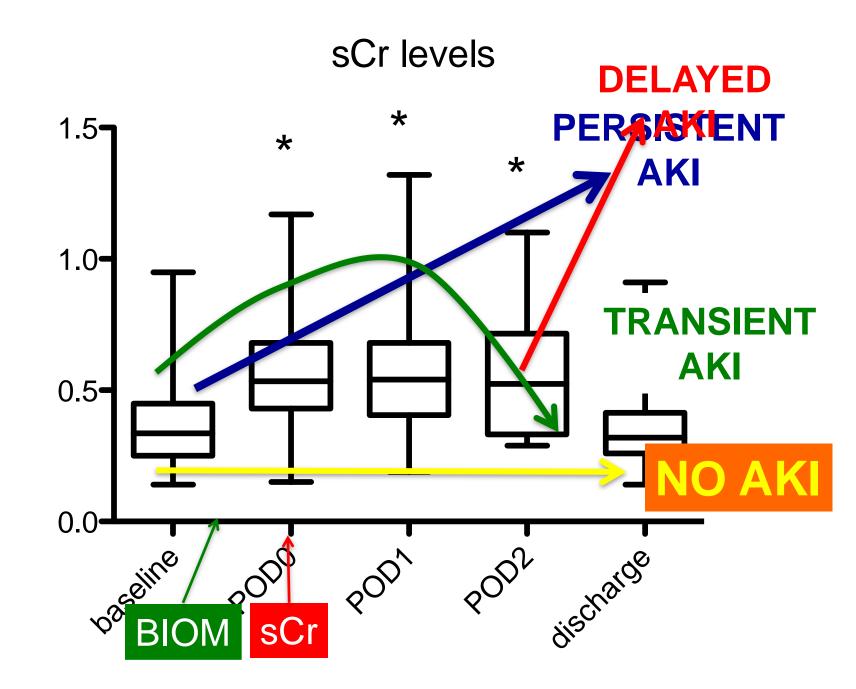
Biomarkers in AKI: NGAL

MISHRA J., et al., J Am Soc Nephrol 14: 2534–2543, 2003


Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery


Jaya Mishra*, Catherine Dent*, Ridwan Tarabishi*, Mark M Mitsnefes, Qing Ma, Caitlin Kelly, Stacey M Ruff, Kamyar Zahedi, Mingyuan Shao, Judy Bean, Kiyoshi Mori, Jonathan Barasch, Prasad Devarajan

Lancet, 2005


- 71 post CPB infants
- AKI incidence:30%
- AKI definition: increase in SCr by 50% or more

	Without acute renal injury (n=51)	Acute renal injury (n=20)	р
Demographics			
Age (years)	4.0 (0.7)	2.1 (1.2)	0.002
Boys	32	13	0.792
White ethnic origin	45	17	0.705
Clinical outcomes			
Previous heart surgery	15	5	0.778
Cardiopulmonary bypass time (min)	105 (8.6)	179 (13.6)	<0.0001
Change in serum creatinine (%)	7.7 (1.8)	99 (9·3)	<0.0001
Diagnosis			
Ventricular septal defect	9	3	
Tetralogy of Fallot	3	9	
Atrial septal defect	7	0	
Coarctation of aorta	5	1	
Aortic stenosis	6	0	
Hypoplastic left heart	2	3	
Atrioventricular canal	3	2	
Pulmonic stenosis	3	1	
Transposition of the great arteries	4	0	
Tricuspid atresia	3	0	
Double-outlet right ventricle	2	0	
Anomalous left coronary artery	1	0	
Cor triatriatum	0	1	
Left-ventricular outflow tract obstruction	1	0	
Mitral regurgitation	1	0	
Aortic regurgitation	1	0	
Data are mean (SE) or number of ch	ildren.		

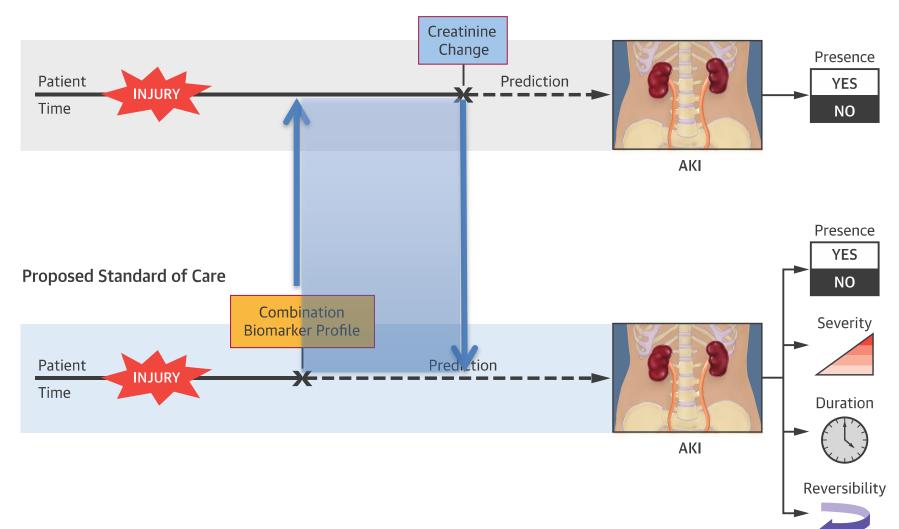
mg/dl

Combining Functional and Tubular Damage Biomarkers Improves Diagnostic Precision for Acute Kidney Injury After Cardiac Surgery Basu et al. JACC 2014

Marker	Sensitivity	Specificity	AUC
∆ SCr > 45%	38%	91%	0.65
pCysC > 0.8 uNGAL > 200	93% ANY	92% AKI	0.95

DEVELOPMENT OF KDIGO stage 2 or 3 at any POD

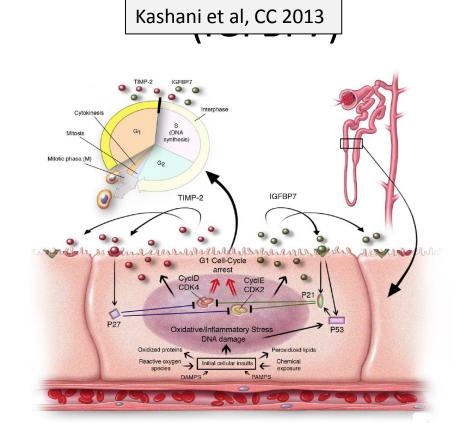
Combining Functional and Tubular Damage Biomarkers Improves Diagnostic Precision for Acute Kidney Injury After Cardiac Surgery Basu et al, JACC 2014



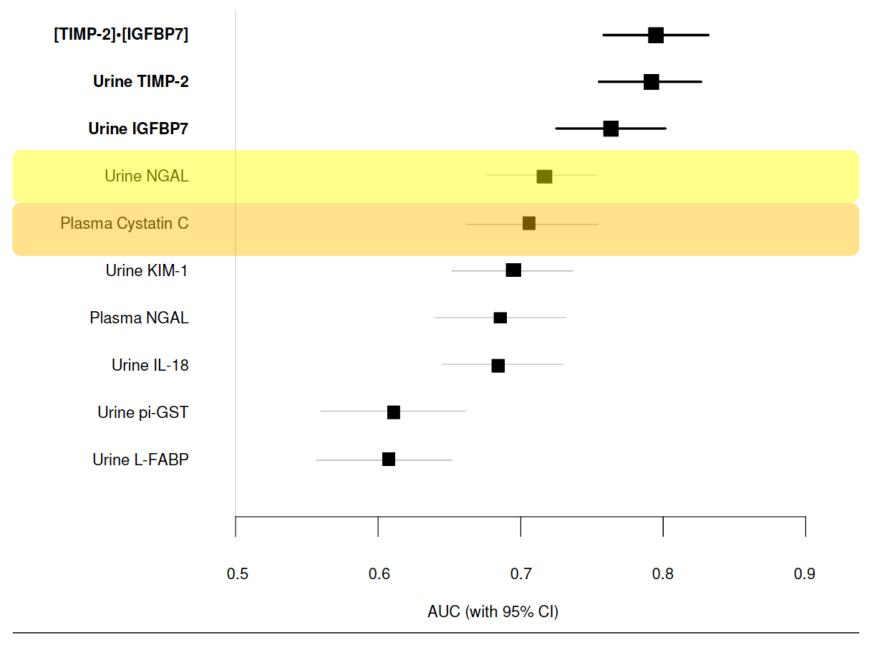
1

	-	+
	 uNGAL/uCr pCysC 	+ uNGAL/uCr - pCysC
-	NO AKI	AKI >2 days
	- uNGAL/uCr + pCysC	+ uNGAL/uCr + pCysC
+	transient AKI	persistent AKI

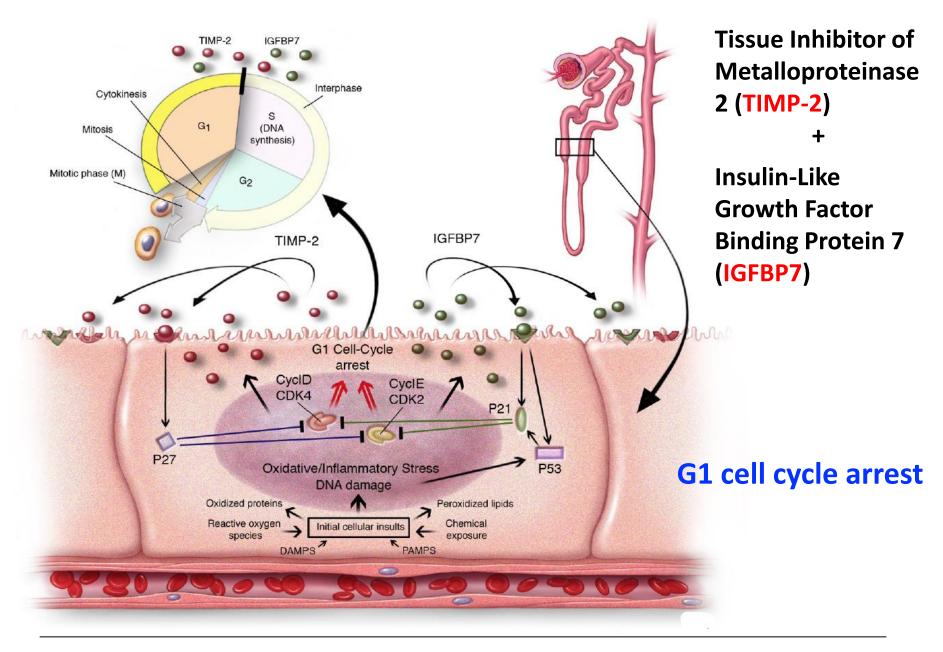
Functional Damage Biomarker


Current Standard of Care

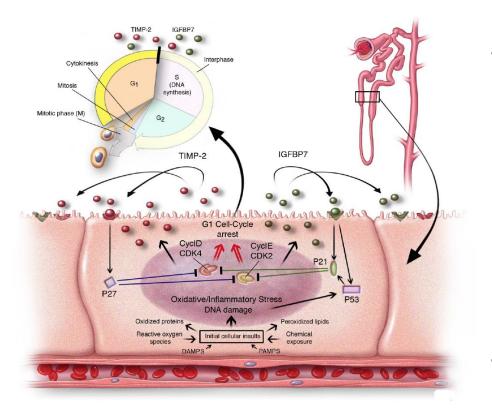
Biomarkers in AKI: TIMP2 - IGFBP7

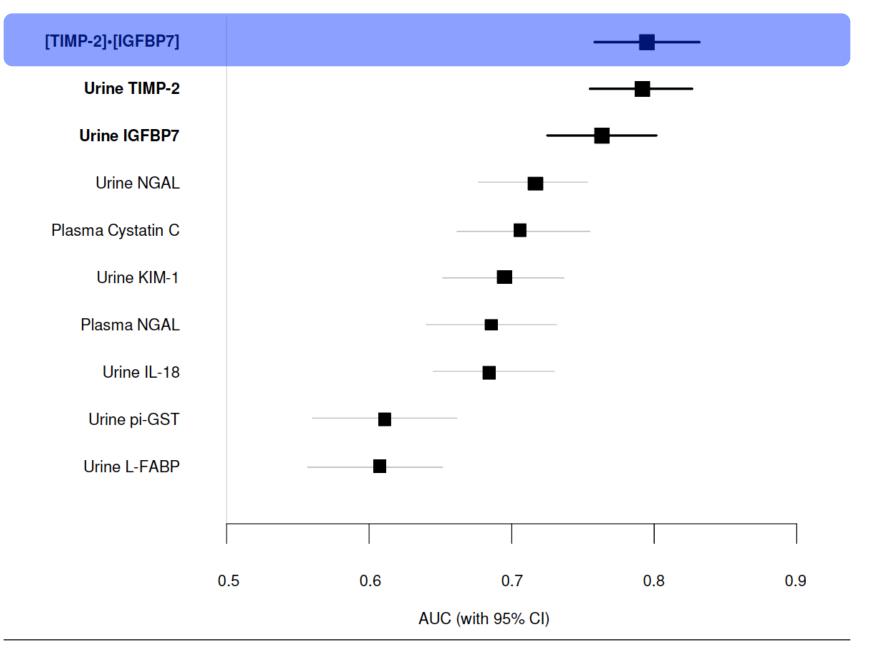

Tissue Inhibitor of Metalloproteinases-2 (TIMP-2) and Insulin-like Growth Factor-Binding Protein 7

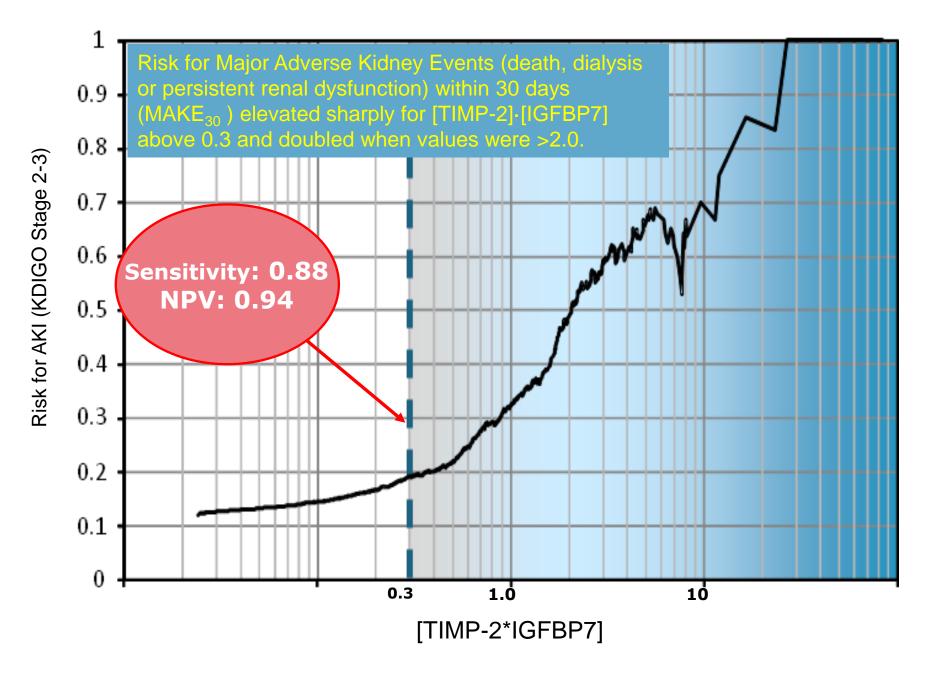
AKI II and III after 12 hours from ICU admission

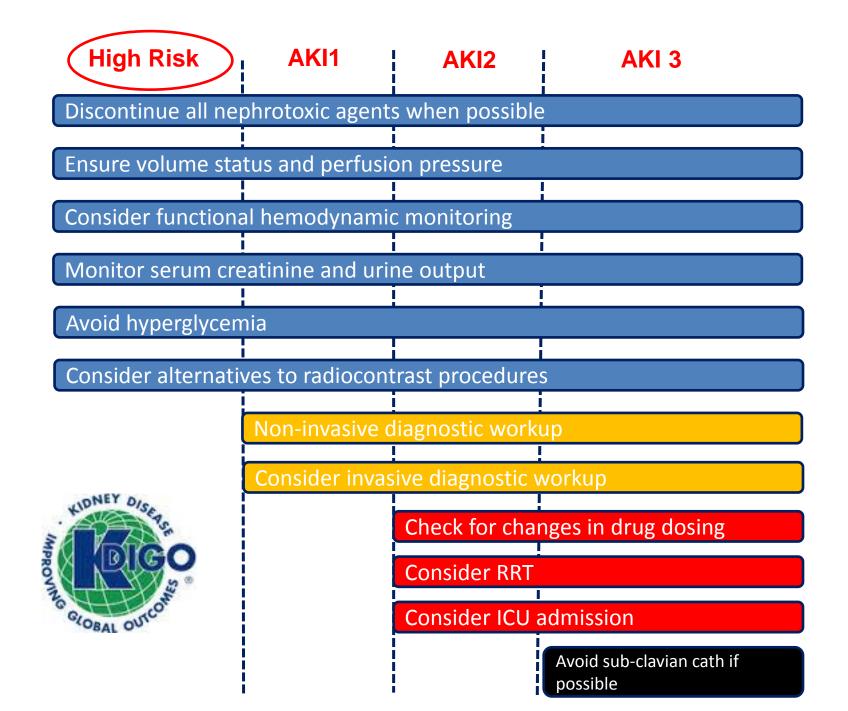


MAKE 30 or death


CELL CYCLE ARREST BIOMARKERS


Kashani et al. Critical Care (2013) 17:R25

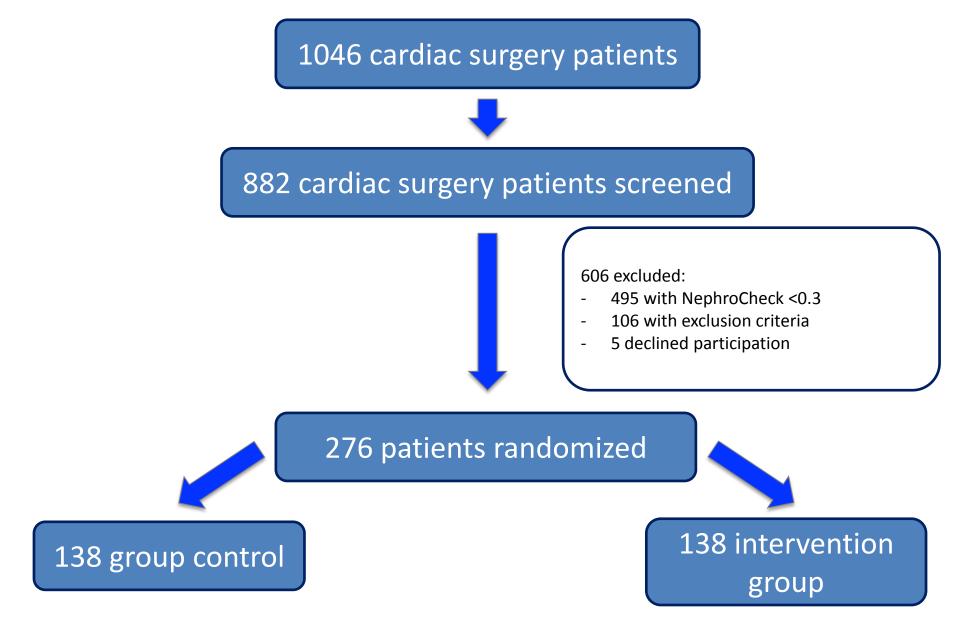

Kashani et al. Critical Care (2013) 17:R25



- Tubular cells may undergo cell cycle arrest (as demonstrated by cell cycle arrest biomarkers in the urine) to decrease energy consumption and protect themselves.
- This phenomenon may then result in activation of the tubulo-glomerular feedback mechanism, which would contribute to a decrease in GFR aimed at attenuating ultrafiltration.

Kashani et al. Critical Care (2013) 17:R25

Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial



Supportive care "bundle" in high risk patients for AKI \rightarrow reduce the occurrence and severity of CSA-AKI,

High risk for AKI was defined as urinary [TIMP-2] \cdot [IGFBP7] \geq 0.3 4 h after CPB.

Avoidance of nephrotoxic agents - discontinuation of ACEi and ARBs for the first 48 h after Surgery - close monitoring of Scr and UO - avoidance of hyperglycemia for the first 72 h after surgery - consideration of alternatives to radiocontrast agents - close hemodynamic monitoring (PiCCO); optimization of the volume status and hemodynamic parameters according to a prespecified algorithm

Meersch M et al. Intensive Care Med (2017)

	Control (<i>n</i> = 138)	Intervention ($n = 138$)	<i>p</i> value
Patients with catecholamines during intervention period, no. (%)			
Dobutamine	13 (9.4)	43 (31.2)	<0.001
Epinephrine	21 (15.2)	29 (21.2)	0.201
Norepinephrine	91 (65.9)	94 (68.1)	0.701
Catecholamines during intervention period, median (Q1, Q3), µg/kg			
Dobutamine	1107.9 (407.6, 1387.6)	1373.2 (960.7, 1700.0)	0.093
Epinephrine	31.6 (9.3, 49.0)	15.2 (5.5, 30.8)	0.191
Norepinephrine	22.7 (7.3, 49.0)	14.5 (5.2, 39.9)	0.088
Volume therapy during intervention period, median (Q1, Q3), ml			
Total volume	2745 (1968, 3625)	2575 (1965, 3518)	0.699
Crystalloids	2220 (1518, 3220)	2220 (1720, 3220)	0.470
Colloids	0 (0, 0)	0 (0, 0)	0.996
Blood products	0 (0, 0)	0 (0, 0)	0.561
H ₂ O	250 (0, 613)	200 (0, 400)	0.057
MAP, mean (±SD), mmHg			
At randomization	72 (11)	73 (11)	0.324
3 h	72 (9)	75 (10)	0.017
6 h	72 (9)	73 (10)	0.217
9 h	71 (10)	74 (9)	0.007
12 h	71 (11)	75 (9)	0.005
CVP, mean (±SD), mmHg			
At randomization	9 (5)	9 (4)	0.956
3 h	9 (4)	10 (4)	0.008
6 h	9 (4)	11 (5)	<0.001
9h	9 (4)	10 (5)	0.014
12 h	10 (4)	10 (4)	0.137
S _v O ₂ , mean (±SD), %			
At randomization	67 (9)	67 (9)	0.872
3 h	66 (9)	68 (9)	0.180
6 h	65 (9)	69 (8)	< 0.001
9 h	65 (9)	68 (10)	0.010
12 h	64 (9)	68 (8)	< 0.001
Atrial fibrillation within 12 h, no. (%)	15 (10.9)	13 (9.4)	0.690
Hyperglycemia ^a , no. (%)	104 (75.4)	70 (50.7)	< 0.001
ACEi/ARBs ^b , no. (%)	42 (30.4)	15 (10.9)	< 0.001
Nephrotoxic agents ^c , no. (%)	22 (15.9)	18 (13.0)	0.494
Contrast agents	19 (13.8)	11 (8.0)	0.122
Vancomycin, gentamicin	6 (4.3)	9 (6.5)	0.426
Diuretics ^d , no. (%)	113 (81.9)	103 (74.6)	0.144
Infections, no./total no. (%)	11 (8.0)	9 (6.5)	0.642
Urine [TIMP-2]·[IGFBP7] at 12 h, ng/ml ² /1000, median (Q1, Q3)	0.84 (0.35, 1.57)	0.58 (0.26, 1.20)	0.045
Relative change urine [TIMP-2]·[IGFBP7] 12 h vs. baseline, ng/ml ² /1000, median (Q1, Q3)	1.13 (0.52, 2.23)	1.07 (0.38, 1.94)	0.272

Patients with catecholamines during	Controls (%)	Interventions	Intervention ($n = 138$) p value	
Dobutamine	13(9.4)	43(31.2)		<0.001
MAP (mmHg)				
3h	72(9)	75(10)		0.017
9h	71(10)	74(9)		0.007
12h	71(11)	75(9)		0.005
CVP (mmHg)		250.(0.613)	200.(0.400) 0.057	
3h	9(4)	10(4)		0.008
6h	9(4)	11(5)		<0.001
9h	9(4)	10(5)		0.014
^{3h} SvO ₂ (%)		9 (4)	10 (4) 0.008	
6h	65(9)	69(8)		<0.001
9h	65(9)	68(10)		0.010
12h	64(9)	68(8)		<0.001
Hyperglicemia	104(75.4)	70(50.7)		<0.001
ACEI/ARBs	42(30.4)	15(10.9)	18 (13 0) 0 404	<0.001
Urine [T2I7] 12 h	0.84(0.35,1.57) 0.58(0.26,2	1.20)	<0.001

	Control (<i>n</i> = 138)	Intervention $(n = 138)$	p value	OR (intervention versus control) (95% CI)	RRRª (95% CI)	ARR ^b (95% CI)
Primary outcome						
AKI within 72 h, no./total no. (%)	99/138 (71.7)	76/138 (55.1)	0.004	0.483 (0.293, 0.796)	23.2% (7.8, 36.1%)	16.6% (5.5, 27.9%)
Diagnosis based on, no. (%)						
Creatinine	14 (14.1)	10 (132)				
Urine output	81 (81.8)	62 (81.6)				
Both	4 (4.0)	4 (5.3)				
Secondary outcomes						
AKI stage, no /total no. (%)						
1	37/138 (26.8)	35/138 (25.4)	0.784	0.928 (0.542, 1.588)	5.4% (-40.7, 36.4%)	1.4% (-8.9, 11.8%)
Diagnosis based on, no. (%)						
Creatinine	12 (32.4)	9 (25.7)				
Urine output	23 (62.2)	25 (71.4)				
Both	2 (5.4)	1 (2.9)				
2	45/138 (32.6)	30/138 (21.7)	0.042	0.574 (0.335, 0.984)	33.3% (0.8, 55.2%)	10.9% (0.5, 21.3%)
Diagnosis based on, no. (%)						
Creatinine	1 (2.2)	1 (3.3)				
Urine output	42 (93.3)	28 (93.3)				
Both	2 (4.4)	1 (3.3)				
3	17/138 (12.3)	11/138 (8.0)	0.232	0.617 (0.278, 1.370)	35.3% (-33.0, 68.5%)	4.3% (-2.8, 11.5%)
Diagnosis based on, no. (%)						
Creatinine	1 (5.9)	0 (0)				
Urine output	16 (94.1)	9 (81.8)				
Both	0 (0)	2 (182)				
Moderate/severe AKI, no./total no. (%)	62/138 (44.9)	41/138 (29.7)	0.009	0.518 (0.316, 0.851)	33.9% (9.3, 51.8%)	15.2% (4.0, 26.5%)
Requirement of RRT within 72 h, no./ total no. (%)	7/138 (5.1)	10/138 (7.2)	0.453	1.462 (0.540, 3.959)	-42.9% (-264.5, 44.0%)	-2.2% (-7.8, 3.5%)
Requirement of RRT during hospital stay, no./total no. (%)	9/138 (6.5)	14/138 (10.1)	0.276	1.618 (0.676, 3.874)	–55.6% (–247.4, 30.3%)	-3.6% (-10.1, 2.9%)
PRD on day 30, no./total no. (%)	7/126 (5.6)	14/129 (10.9)	0.124	2.070 (0.806, 5.313)	–95.3% (–367.9, 18.4%)	-5.3% (-12.0, 1.4%)
PRD on day 60, no ,/total no. (%)	6/125 (4.8)	11/128 (8.6)	0.228	1.865 (0.668, 5.207)	–79.0% (–369.3, 31.7%)	-3.8% (-9.9, 2.3%)
PRD on day 90, no./total no. (%)	9/125 (7.2)	9/126 (7.1)	0.986	0.992 (0.380, 2.587)	0.8% (-141.6, 59.3%)	0.1% (-6.3, 6.4%)
Requirement of RRT on day 30, no./total no. (%)	3/132 (2.3)	4/131 (3.1)	0.722	1.354 (0.297, 6.173)	–34.4% (–488.6, 69.3%)	-0.8% (-4.7, 5.4%)

The overall AKI incidence was 63.4% (175/276).

rimary outcome	80				% (7.8, 36.1%)	16.6% (5.5, 27.9%
AKI within 72 h, no/total no. (%)		71.7			70 (7.8, 50.170)	10.0% (5.5, 27.9%
Diagnosis based on, no. (%)	70					
Creatinine			55.1			
Urine output Both	60					
Secondary outcomes						
AKI stage, no /total no. (%)	50	44.9				
1					(-40.7, 36.4%)	1.4% (-8.9, 11.8%
Diagnosis based on, no. (%)	40			<u> </u>) (-40.7, 30.470)	1.470 (-0.9, 11.070
Creatinine				29.7		
Urine output	30					
Both	20					
2	20				% (0.8, 55.2%)	10.9% (0.5, 21.3%
Z Diagnosis based on, no. (%)	10				70 (0.0, 55.270)	10.570 (0.5, 21.57)
Creatinine	10					
Urine output	0					
Both	Ū	control	inter	rvention		
3		all AKI N	Ioderate and severe AKI		6 (-33.0, 68.5%)	4.3% (-2.8, 11.5%
Diagnosis based on, no. (%)			IOUEI ale anu severe AKI		1 (0010) 001070	1070 (210) 1107
Creatinine		1 (5.9)	0 (0)			
			- 5-2			
🔚 Primary outo	come (A	AKI within 72 h afte	r surgery):			
	•		• • • •			26.5%
Ref Intervention	group	(55.1%) vs control ((1.7%) [p = 0.0	104; UR, U. ²	185 (95% CI,	8, 3.5%
0.293-0.796	.)					, 0.0 /
Re	· /·					i96
no./total no. (%)					30.3%)	(-10.1, 2.9%)
In the interve	ention §	group significantly l	ower rates of n	noderate a	nd severe AK	.0, 1.4%
were observ	ed com	pared to the control	ol group (29.7%	5) vs (44.9%	b); $p = 0.009$;	OR, ^{9,23%}
		•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3, 6.4%
🖞 0.518 (95% C	J, U.316	-0.851).				.7, 5.4%
PO (%)					69,336)	7,5.47

The adherence to guidelines (and bundles) can reduce the occurrence of CSA-AKI

- Maybe ... patients who received dobutamine ... also received a better hemodynamic monitoring
- resulting in the possibility of a more personalized medicine

<u>WHO TO TEST</u>: Post-op CT surgery patients (All cardiac surgery patients on post-op day 1 at 0530) WHO NOT TO TEST: Pre-op creatinine >2, established stage 2/3 AKI, on RRT or in imminent need

1) MD, NP, PA orders NephroCheck on EMR

2) ICU RN collects fresh urine sample and sends to lab immediately

3) Lab reports results to ordering MD, NP, PA who will follow flow diagram below

Time of sample collection: 0530 POD1

LOW RISK <0.3	MOD RISK 0.3-2.0	HIGH RISK >2.0	
Negative AKIRisk Score	Positive AKIRisk Score - Moderately high risk of AKI in	Positive AKIRisk Score - Very high risk of AKI in next 12	
	next 12 hours	hours	
Standard of Care	Super Standard Management	Aggressive Management to Prevent AKI	
Foley out ASAP	Keep foley and hourly U.O.	Keep foley and hourly U.O.	
Daily Serum Cr.	Serum Cr. Q 12	Serum Cr. Q 8-12	
Remove HD Monitoring	Consider HD Monitoring	Do HD Monitoring	
Average hourly U.O.	Avoid any nephrotoxin	Avoid all potential nephrotoxins	
May use NSAIDS/ACE	For oliguria, may use balanced fluid IF CVP<8; Hold	May use balanced fluid IF CVP<8 AND evidence of	
	lasix unless pulmonary edema	hypovolemia (not just oliguria); hold lasix	
SVO2 not monitored	No NSAIDS or ACE/ARB's	No NSAIDS or ACE/ARB's – adjust doses (narcotics)	
Consider transfer out of ICU	Monitor SVO2 if h/o abnormal LV fx	Monitor SVO2, Echo or PA catheter if <55% -	
Recheck markers in 12 hours if new insult occurs	Consider inotropes	Inotropes to keep Cl.2.2	
	Consider renal phone call	Renal consult	
	Sensible fluids	Sensible fluids	
	Avoid dye	Avoid dye	
	Consider Colloids only approach	Dobutamine for cardiac surgery patients	
	Recheck markers in 8-16 hours, if more than 1.4 or		
	vectoring more than 0.6 presume AKI should be		
	treated		
	Avoid multiple pressors		

*NOTE: Record LOS, mortality, dialysis (yes/no, length of RRT), peak creatinine, KDIGO stage of AKI (nephron clin prac 2012 120 179-184), rehab (yes/no, LOS)

The information in this document is for educational purposes and is not intended to be exhaustive, nor a substitute for medical advice. Always consult your medical director, physician or other qualified health provider regarding processes and/ or protocols for diagnosis and treatment of a medical condition.

JAMA Surgery | Special Communication

Guidelines for Perioperative Care in Cardiac Surgery Enhanced Recovery After Surgery Society Recommendations

Daniel T. Engelman, MD; Walid Ben Ali, MD; Judson B. Williams, MD, MHS; Louis P. Perrault, MD, PhD; V. Seenu Reddy, MD; Rakesh C. Arora, MD, PhD; Eric E. Roselli, MD; Ali Khoynezhad, MD, PhD; Marc Gerdisch, MD; Jerrold H. Levy, MD; Kevin Lobdell, MD; Nick Fletcher, MD, MBBS; Matthias Kirsch, MD; Gregg Nelson, MD; Richard M. Engelman, MD; Alexander J. Gregory, MD; Edward M. Boyle, MD

Postoperative Strategies

Kidney Stress and Acute Kidney Injury

Based on these studies, biomarkers are recommended for early identification of patients at risk and to guide an intervention strategy to reduce AKI (class IIa, level B-R).

Class (Strength) of Recommendation

I (strong): benefit many times greater than risk IIa (moderate): benefit much greater than risk IIb (weak): benefit greater than risk III: no benefit (moderate): benefit equal to risk III: harm (strong): risk greater than benefit

Level (Quality) of Evidence

А

High-quality evidence from more than 1 randomized clinical trial Meta-analysis of high-quality randomized clinical trials One or more randomized clinical trials corroborated by registry studies

B-R

Moderate-quality evidence from 1 or more randomized clinical trial

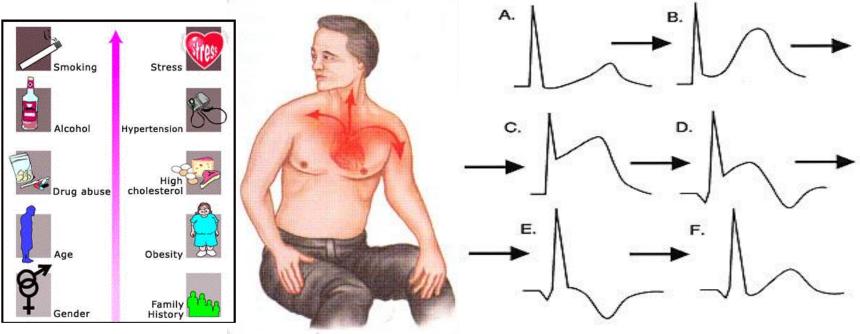
Meta-analysis of moderate-quality randomized clinical trials

B-NR

Moderate-quality evidence from 1 or more well-designed, wellexecuted nonrandomized studies or observational studies

C-LD

Randomized or nonrandomized observational or registry studies with limitations of design or execution


C-EO

Consensus of expert opinion based on clinical experience

WHY SHOULDN'T WE DOSE BIOMARKERS TO ALL PATIENTS ADMITTED TO THE ICU?

IS TROPONIN DOSED TO ALL PATIENTS?

- An at-risk individual
- Symptoms that raise suspicion for MI (angina, ST elevation)
- Lack of the anginal equivalent should inform us to not use the marker

Troponin, the "Gold Standard", + sick patient

Abstract *Objective*: To detect myocardial damage in severe systemic inflammation by cTnI measurements in patients without acute coronary syndromes.

Design: Prospective case control study.

Setting: Tertiary referral center. *Participants:* Twenty patients with sepsis, septic shock, and systemic inflammatory response syndrome

Intensive (SIRS) were examined and com-

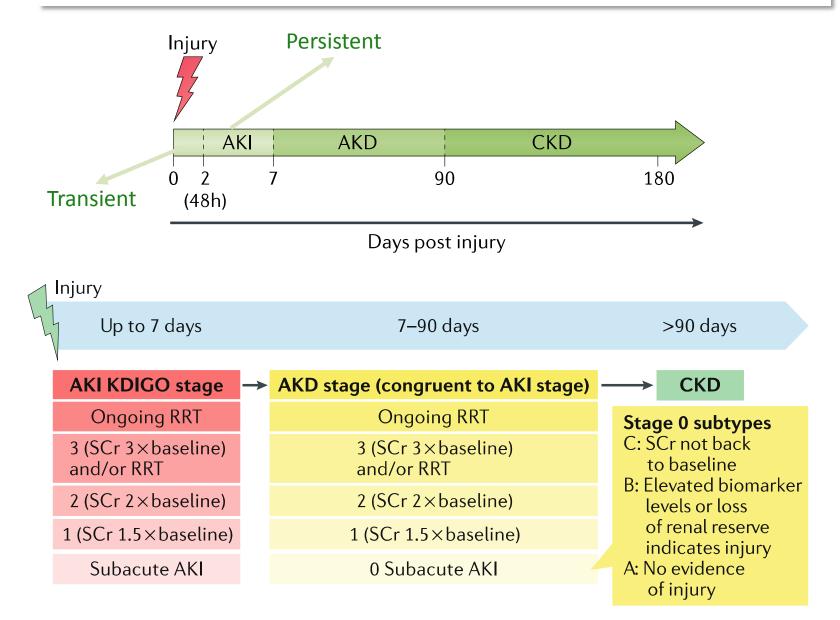
- DOI 10.1(pared to controls without coronary artery disease or myocarditis. *Measurements and results:* cTnI levels were assessed in patients with SIRS, sepsis, and septic shock. Eight P.Amm: patients (two female/six male) suf-T.Fehr fered from septic shock, nine (three E. I.Min female/six male) from sepsis without
- C. Günte shock, and three (three male) from SIRS. Seventeen patients (85%)
- **O.Berte** SIRS: Seventeen patients (85 %) showed elevated cTnI (median $0.57 \mu g/l; 0.17-15.4$), whereas no patient in the control group showed elevated cTnI (P < 0.0001). Six pa-

tients (30%), – three with septic shock and three with sepsis – died during hospitalization, five of them with elevated cTnI. Four out of five autopsies showed normal coronary arteries. Coronary angiography, autopsy, and stress echocardiography ruled out significant coronary artery disease in ten cTnI-positive patients (59%). In 41% of cTnI-positive patients, Streptococcus pneumoniae could be cultured, whereas no cTnInegative or control patient showed signs of infection due to S. pneumoniae. Conclusion: Cardiac troponin I was elevated in 85% of patients with sepsis, septic shock or SIRS in our study. A high percentage showed infection caused by S. pneumoniae. In what way microorganisms cause cTnI elevations is not yet understood.

Keywords Cardiac troponin I · SIRS · Sepsis · Septic shock · Myocardial cell injury

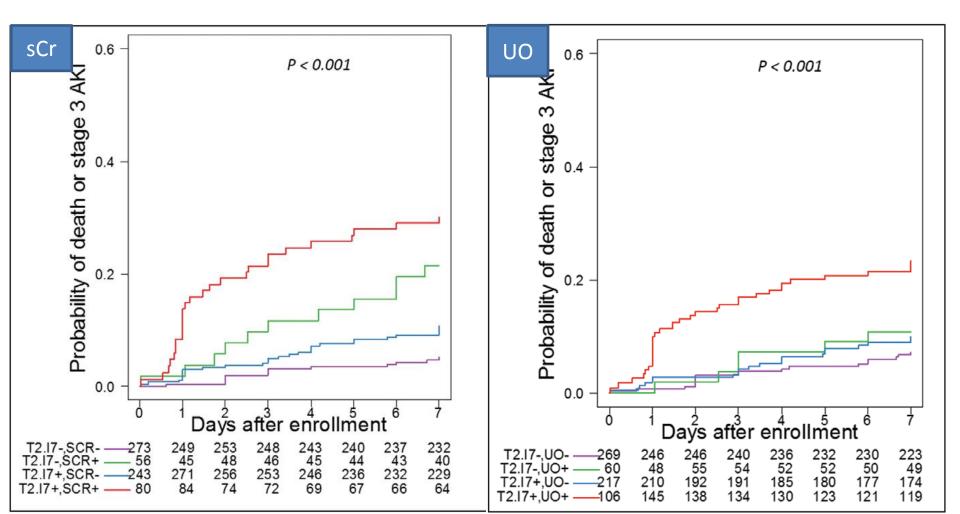
Being sick → Increased Troponin

	Table 2 Reasons for acutely elevated troponins		
	Acute coronary syndrome		
	Acute heart failure		
	Pulmonary embolism		
Frontiers in c	Stroke		
	Acute aortic dissection		
Tuener	Tachyarrhythmias		
Tropor	Hypotension / Shock	C	
disease	Sepsis		
	ARDS		
S. Agewall ^{1,}	Perimyocarditis		
J. Agewall	Endocarditis		
¹ Department of Medicine Karolinska University Ho	Tako-tsubo cardiomyopathy	di	
Received 23 April 2010; re	Radiofrequency catheter ablation		
	Cardiac contusion		
	Strenuous exercise		
	Sympathomimetic drugs		
	Chemotherapy		


oronary

dinge, Karolinska Institutet,

How, and In Whom, Do We Apply AKI Biomarkers?

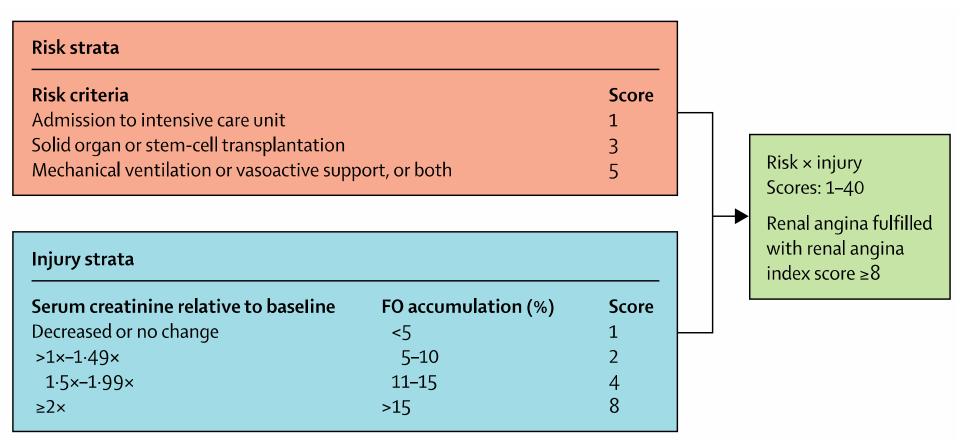

- Medical school aphorism: "There are only three reasons that people go to a doctor"
 - Fever
 - Bleeding
 - Pain
- AKI is not specifically associated with any of these, simply put, "AKI doesn't hurt"

ACUTE DIALYSIS QUALITY INITIATIVE WORKGROUP 16 (NAT REV NEPHROL 2017)

Use of Cell Cycle Arrest Biomarkers in Conjunction With Classical Markers of Acute Kidney Injury

Michael Joannidis, MD¹; Lui G. Forni, BSc, PhD, MBBS, MRCPI, AFICM²; Michael Haase, MD³; Jay Koyner, MD⁴; Jing Shi, PhD⁵; Kianoush Kashani, MD, MSc^{6,7}; Lakhmir S. Chawla, MD⁸; John A. Kellum, MD, MCCM⁹; on behalf of the Sapphire Investigators **CCM 2019**

RENAL ANGINA INDEX (RAI)


Zaccaria Ricci Department of Cardiology and Cardiac Surgery, Pediatric Cardiac Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy zaccaria.ricci@gmail.com

A renal angina index to overcome the silence of the kidneys

Comment

RAI

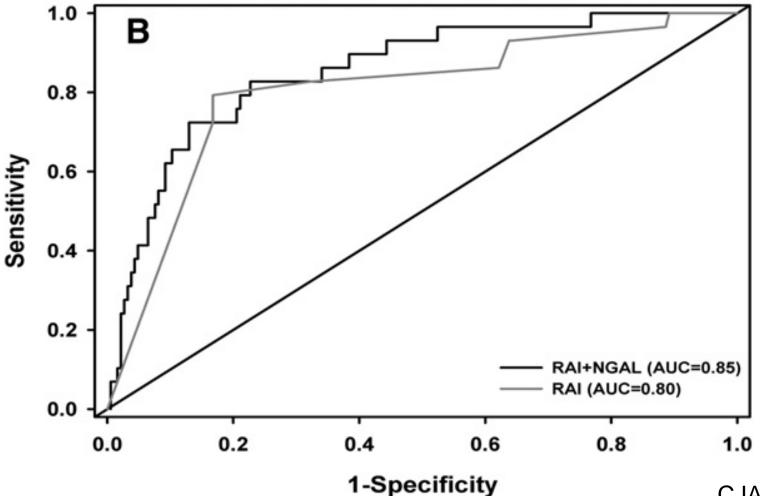
The index calculation for the fulfilment of renal angina is assessed **12 h after a patient is** admitted to an intensive care unit and used for prediction of severe acute kidney injury **72 h (3 days) later.**

Risk factors are determined as described and assigned a point value (1, 3, and 5, where 1 denotes the lowest risk and 5 denotes the highest risk). Mechanical ventilation and vasoactive support should be used within the 12-h timepoint but are not required to be simultaneous for a patient to be scored 5 points.

Injury strata are described and assigned to a patient as appropriate.

Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study 2017

Rajit K Basu, Ahmad Kaddourah, Stuart L Goldstein on behalf of the AWARE study investigators


Day 0 renal angina status

Fulfilment of renal angina: 286 (18%) PRISM-III: 7 (3–14) PIM-2: 3 (1–6) Severe acute kidney injury day 3: 121 (41%) Renal replacement therapy use: 36 (13%) Mortality: 32 (11%)

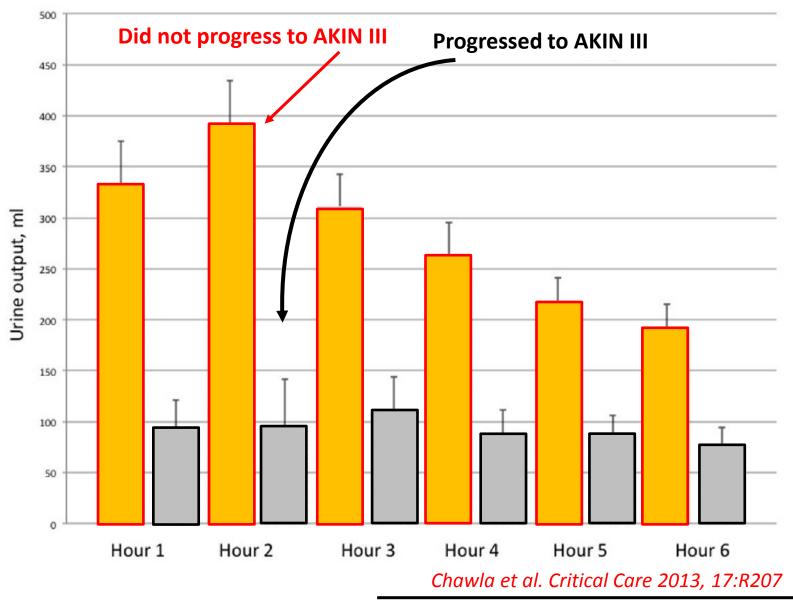
- No renal angina: 1304 (82%) PRISM-III: 5 (3–8) PIM-2: 3 (1–4) Severe acute kidney injury day 3: 247 (19%) Renal replacement therapy use: 22 (1%) Mortality: 49 (4%)
- For the assessment of the renal angina index, patients from the AWARE study who had full data from the day of ICU admission, day 3, and day 28, including serum creatinine concentrations and urine output measurements were included.
- Data for 1590 patients. 286 patients (18%) had fulfilment of renal angina.
- At day 3, severe acute kidney injury occurred in 121 (42%) patients positive for renal angina and 247 (19%) patients negative for renal angina (relative risk [RR] 2.23, 95% Cl 1.87–2.66, p<0.0001).
- Fulfilment of renal angina showed better prediction for severe AKI than serum creatinine greater than baseline (RR 1.61, 95% CI 1.33–1.93; p<0.0001), which was maintained on multivariate regression (independent odds ratio for fulfilment of renal angina 3.21, 95% CI 2.20–4.67 vs serum creatinine greater than baseline 0.68, 0.49–4.94).

Incorporation of Biomarkers with the Renal Angina Index for Prediction of Severe AKI in Critically III Children

Rajit K. Basu,^{*†‡§} Yu Wang,[†] Hector R. Wong,^{†‡} Lakhmir S. Chawla,[∥] Derek S. Wheeler,^{*†‡} and Stuart L. Goldstein^{*†¶}

CJASN 2014

Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury


✓ 77 patients with early AKI → ✓ I.V. furosemide (1 mg/kg for diuretic-naïve patients or 1.5 mg/kg for diuretic-exposed patients)

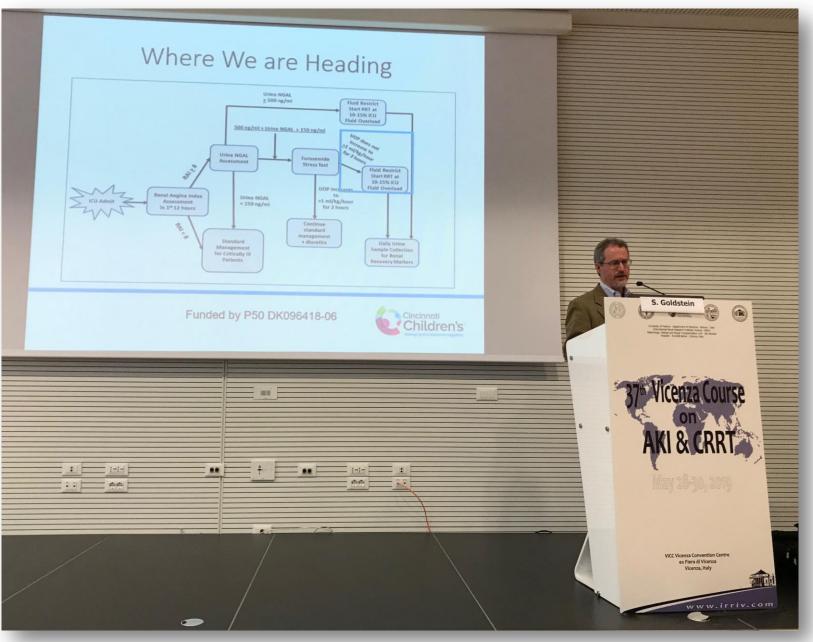
 \checkmark \rightarrow measured urinary volume over time

Chawla et al. Critical Care 2013, 17:R207

Furosemide Stress Test

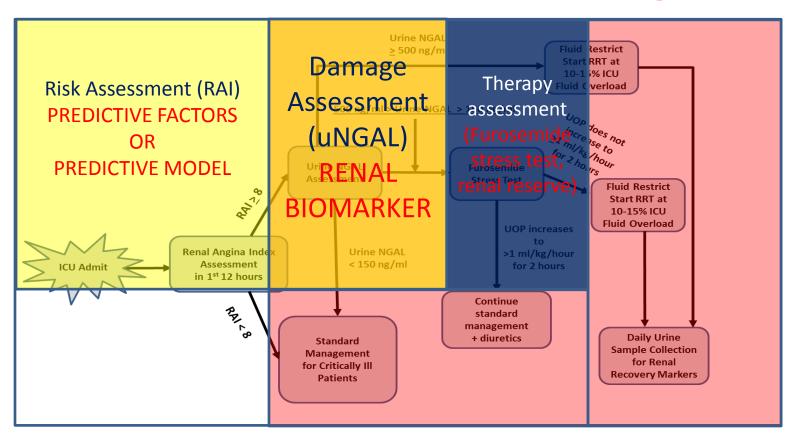
Furosemide stress test effect on urine flow

Furosemide Stress Test


	Combined cohort		
Total urine output over 2 hours	Sensitivity	Specificity	
≤100 ml	90.2%	60.0%	
<200 ml	87.1%	84.1%	
<300 ml	85.3%	88.0%	
<400 ml	66.7%	88.0%	
<500 ml	50.5%	88.0%	

 A volume less than 200 mL in 2 hours (100 ml/h) had 87% sensitivity and 84% specificity of worsening of AKI.

Conclusions: The FST in subjects with early AKI serves as a novel assessment of tubular function with robust predictive capacity to identify those patients with severe and progressive AKI. Future studies to validate these findings are warranted.


Chawla et al. Critical Care 2013, 17:R207

Furosemide Stress Test

With permission, by Stu himself

Where We are Heading

Funded by P50 DK096418-06

CONCLUSIONS

- ✓ AKI is bad
- KDIGO classification (especially classes 2 and 3) highlights that function is lost
- ✓ Prevention is key
- Renal damage/stress can now be identified and further disease evolution anticipated
- Adequate selection of patients screened with biomarkers (high risk surgery, AKI1, RAI, FST) is recommended

CONCLUSIONS

✓ Active research is ongoing on renal

biomarkers and the Holy Grail is about to come

✓ Further research should confirm the efficacy

of therapeutic/preventive bundles in the

management of AKI

Critical Care Nephrology and Renal Replacement Therapy in Children

> Akash Deep Stuart L. Goldstein *Editors*

RONCO | BELLOMO | KELLUM | RICCI

ELSEVIER

CRITICAL CARE NEPHROLOGY