

Tuscany Keynote Lecture: ECMO

Fabio Sangalli, MD, FASE

Department of Anaesthesia and Intensive Care Medicine ASST Monza – Ospedale San Gerardo – Monza – Italy

Firenze, 26 Settembre 2019

Sistema Socio Sanitario Regione Lombardia

ASST Monza

Disclosure

✓ No disclosures

@docsanga

To be covered

 Some numbers
 Three burning questions and four open issues

Active ECLS Centers and runs

73%

43%

42%

59%

52%

42%

59%

43%

29%

55%

Active ECLS Centers and runs

ELSO Registry July 2019

Runs by Year

ELSO Registry July 2019

Adult Survival by Diagnosis and Year

Respiratory

Traditional Indications

Cardiac indications

- Refractory Cardiogenic Shock
 - Acute myocardial infarction
 - Fulminant myocarditis
 - After complicated cardiac surgery
 - Heart Transplantation
- Massive pulmonary embolism
- Septic shock with severe LV failure
- After Cardiac Arrest
- Refractory Cardiac Arrest

VV-ECMO?

Respiratory indications

- Rescue of severe hypoxaemia
 - ARDS, hypoxaemic ARF
- Hyper-protective ventilation
 - ARDS
- Alternative to invasive ventilation
 - ARDS, COPD
- ✓ Others (bridge to Tx, air leaks etc)

Traditional indications in ARF

If the heart is not compromised go for VV

If you need hemodynamic support go for VA

Tricky Indications in ARF

SLOW Difficult Decision Ahead

Courtesy: G. Doufle, TGH (modified)

Have we averted deaths using venoarterial ECMO?

Matthieu Schmidt^{1,2}, Hannah Wunsch^{3,4,5,6} and Daniel Brodie^{7*}

- Currently, the highest level of evidence is limited to small, single-center cohort studies with propensity analyses
- The potential benefit of this intervention is highly dependent on the indication, and may range from great benefit (many deaths averted) to great harm (additional deaths due to VA-ECMO)
- ✓ VA-ECMO might be expected to have the greatest benefit to mortality when it is initiated in patients during refractory cardiac arrest
- The timing of initiation may be crucial to any potential for averting deaths with VA-ECMO

✓ No direct comparison between conventional ALS and E-CPR

What we know is important:

✓ No-flow and CA time (witnessed CA)

✓ Quality of CPR

- ✓ Signs of life
- ✓ Transitory ROSC
- ✓(Rhythm?)
- ✓LOGISTICS

E-CPR is just a ring in the chain of survival

Consider: • Ultrasound imaging Mechanical chest compressions/ • Coronary angiography and PCI • Extracorporeal CPR

Cath

lab

ED

ICU

000

Laypeople education

- CPR
- ٠ **AEDs**

PAD Programmes

Bystander CPR Dispatcer-assisted CPR (hands-only CPR)

Widespread PADs "Institutional" PADs (Police, Firefighters...) "Proximity rescuers"

@docsanga

Lay rescuers

Advanced pre-H care **Pre-H/H** networking Minimise time on scene Accurate communication

- **Cath Lab**
- Theatre
- **Diagnostic facilities**
- Advanced neurological monitoring
- **Dedicated teams (ICU-neuro)**

1. Rear Jack 2. Rear Tyre Off 3. Tyre Gunner 4. Rear Tyre On 5. Stabiliser 6. Front Tyre On 7. Tyre Gunner 8. Front Tyre Off/Stop Marker 9. Front Wing Adjuster 10. Backup Front Jack 11. Front Jack 12. Front Wing Adjuster 13. Front Tyre Off / Stop Marker 14. Tyre Gunner 15. Lollipop Man 16. Front Tyre On 17. Stabiliser 18. Rear Tyre Off 19. Tyre Gunner 20. Rear Tyre On 21. Driver

2006-2010 2011-2012 2013-2017 2018-2019

E-CPR for OHCA

Door-to-ECPR time	43.8 ′	30.8'	22.7′	15.6 '
(mins, median)				•
Survival to D/C	9%	19%	28%	29%
(CPC 1-2)	•			

Lombardia ECMO activity 01/2016-03/2018

	2016	2017	2018	n. survived	3
E-CPR Patients	101	125	46	98/272	
ECMO for CS	58	103	30	134/191	u
ECMO for ARDS	39	33	33	75/105	
ECMO PE	4	2	5	3/11	•
ECMO for Hypothermia	4	5	0	4/9	•
ECMO < 16 aa	33	43	24	57/100	•
Total ECMO pts	236	312	147	366/695	
		DRIEU ECMO		P.Galimberti	

Is PEA a contraindication to E-CPR?

What next?

Q #1: Is E-CPR a life saver or a costly toy?

Is it better to take the patient to ECMO or ECMO to the patient?

The Lombardia experience

Q #1: Is E-CPR a life saver or a costly toy?

HORIZONTAL LIMITS

First trauma patient on by-pass: ✓ 24 yo male ✓ Motorcycle accident ✓ Aortic rupture ✓ Surgery on by-pass ✓ Post-traumatic ARDS ✓ FCI S for 75hrs Survived wo deficits

Modified from Curr Opin Anesth 2019

Indications and outcomes of extracorporeal life support in trauma patients

TABLE 2. Trauma Diagnoses and Indications for ECLS Support						
Index Trauma Diagnosis	n	%	ECLS Indication	n	%	
Thoracic injury	76	27.2	ARDS/lung failure	138	49.5	
Spine fracture	42	15.1	Trauma NOS	34	12.1	
Abdominal injury	34	12.2	Extremity fracture	15	5.4	
Orthopedic fracture	33	11.8	Hemothorax/pneumothorax	12	4.3	
Burns	33	11.8	Pulmonary infection	11	3.9	
Skull fracture	13	4.6	Burns	10	3.6	
Traumatic brain injury	10	3.6	Pulmonary contusion	10	3.6	
Vascular injury	8	2.9	Shock	8	2.9	
Spinal cord injury	5	1.8	Cardiogenic shock	8	2.9	
Other	25	9.0	Abdominal injury	5	1.8	
Total	279	100	Pulmonary embolism	4	1.4	
			Spinal cord injury	2	0.7	
			Acute myocardial infarction	2	0.7	
			Viral pneumonia	2	0.7	
			Drowning	2	0.7	
			Hypothermia	1	0.4	
			Fat embolism	1	0.4	
			Other	14	5.0	
Total	179	100%	Total	179	100%	

Extracorporeal life support in trauma: Worth the risks? A systematic review of published series

TABLE 3. Ranges of Outcomes Reported for Variables of Interest				
Variable	Range Among Included Studies			
Mean age	5–72 y (12 out of 215 patients were <16 y of age)			
Blunt trauma	81-100%			
ISS	18-73			
Duration from trauma to ECLS	<1–38 d			
Duration on ECLS	<1–43 d			
Death from bleeding	0-38% (<15% in studies after 1995			
Death from sepsis/MSOF	0-30%			
Oursell maninel to discharge	50 700/			
VV-ECLS survival to discharge	56-89%			
VA-ECLS survival to discharge	42–63%			
Survivar in paucitis with ICII	00-9370			

Reports by Senunas et al., Huang et al., and Arlt et al. were not included in the pooled analysis because of significant overlap of their reported patients with other included series. Denominators were based on the total number of patients where the outcomes of the variable of interest were specifically reported.

ISS, Injury Severity Score; ECLS, extracorporeal life support; VA, venoarterial; VV, venovenous; MSOF, multisystem organ failure.

Conclusion

The use of ECLS in trauma patients when needed may provide survival benefits that significantly overweigh the feared risk of bleeding associated.

Schmidt M, Critical Care 2014

TOTAL LUNG REST

OPEN LUNG APPROACH

International survey on the management of mechanical ventilation during ECMO in adults with severe respiratory failure

- ✓173 adult respiratory ECMO centres
- ✓Only 27.1% of ECMO centres had a protocol for MV on ECMO
- ✓ 55.8% of centres limited plateau pressure to less than 30 cmH₂O
- ✓ 45.7% used low PEEP and low plateau pressure to allow "lung rest" during ECMO
- ✓ 44.2% preferred an open lung ventilation strategy with moderate/high PEEP values

TOTAL REST

Walking the tight rope...

✓ Less strain

- Need for higher BF to obtain adequate oxygenation
- More frequently persisting hypoxemia
- ✓ RV does not like lung collapse

✓ Need to convert to VA in some patients

TOTAL REST STRATEGY PRO:

- Minimize Overdistention
- Lower Airway Pressure CON:
- Atelectrauma
- Right Ventricular Failure
- Higher Intrapulmonary Shunt

OPEN LUNG STRATEGY PRO:

- Minimize Atelectrauma
- Lower Vt/EELV ratio
 CON:
- Overdistention

OPEN LUNG

- Less cyclic closure/reopening
- Lower BF may be sufficient
- Lower incidence of RV failure and conversion to VA
- Might lead to overdistention
- ✓ Might be less 'protective'

Pesenti A., Med Klin Intensivmed Notfmed 2018

Extracorporeal membrane oxygenation for pandemic H1N1 2009 respiratory failure

33%

Four patients were converted from v-v to v-a ECMO, three because of right heart failure and one because of life threatening arrhythmias with circulatory instability that did not respond to conventional treatment.

...upside down you turn me...

An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome

Eddy Fan, Lorenzo Del Sorbo, Ewan C. Goligher, Carol L. Hodgson, Laveena Munshi, Allan J. Walkey, Neill K. J. Adhikari, Marcelo B. P. Amato, Richard Branson, Roy G. Brower, Niall D. Ferguson, Ognjen Gajic, Luciano Gattinoni, Dean Hess, Jordi Mancebo, Maureen O. Meade, Daniel F. McAuley, Antonio Pesenti, V. Marco Ranieri, Gordon D. Rubenfeld, Eileen Rubin, Maureen Seckel, Arthur S. Slutsky, Daniel Talmor, B. Taylor Thompson, Hannah Wunsch, Elizabeth Uleryk, Jan Brozek, and Laurent J. Brochard; on behalf of the American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine

THIS OFFICIAL CLINICAL PRACTICE GUIDELINE OF THE AMERICAN THORACIC SOCIETY (ATS), EUROPEAN SOCIETY OF INTENSIVE CARE MEDICINE (ESICM), AND SOCIETY OF CRITICAL CARE MEDICINE (SCCM) WAS APPROVED BY THE ATS, ESICM, AND SOCIETY OF CRITICAL CARE MEDICINE (SCCM) WAS APPROVED BY THE ATS, ESICM, AND SOCIETY OF CRITICAL CARE MEDICINE (SCCM) WAS APPROVED BY THE ATS, ESICM, AND SOCIETY OF CRITICAL CARE MEDICINE (SCCM) WAS APPROVED BY THE ATS, ESICM, AND SOCIETY OF CRITICAL CARE MEDICINE (SCCM) WAS APPROVED BY THE ATS, ESICM, AND SOCIETY OF CRITICAL CARE MEDICINE (SCCM) WAS APPROVED BY THE ATS, ESICM, AND SOCIETY OF CRITICAL CARE MEDICINE (SCCM) WAS APPROVED BY THE ATS, ESICM, AND SCCM, MARCH 2017

Question 2: Should Patients with ARDS Receive Prone Positioning?

Recommendation. We recommend that adult patients with severe ARDS receive prone positioning for more than 12 hours per day (strong recommendation, moderate-high confidence in effect estimates).

- ✓Non-adherence to evidence-based management of ARDS is common
- The question is no longer whether ECMO works, but "by how much does ECMO work, in whom, and at what cost?"
- We very strongly advocate for widespread adoption of proven conventional management approaches

Lancet 2019

Unproven and Expensive before Proven and Cheap: Extracorporeal Membrane Oxygenation versus Prone Position in Acute Respiratory Distress Syndrome

Xuehan Li^{1,2,3}, Damon C. Scales^{3,4}, and Brian P. Kavanagh^{1,3}

Application of prone position in hypoxaemic patients supported by veno-venous ECMO [☆]

Alberto Lucchini^{a,d,*}, Christian De Felippis^b, Giulia Pelucchi^a, Giacomo Grasselli^c, Nicolò Patroniti^a, Luigi Castagna^c, Giuseppe Foti^a, Antonio Pesenti^c, Roberto Fumagalli^{d,e}

- PP during ECMO was not associated with major adverse events.
- In hypoxaemic patients, PP can improve oxygenation
- PP during VV-ECMO is a safe procedure when performed by trained staff in a recognised ECMO centre.

Spontaneous breathing during veno-venous extracorporeal membrane oxygenation

Stefania Crotti, Nicola Bottino, Elena Spinelli

PROs

- ✓ Better V_A/Q matching
- ✓ Muscle tone preservation
- ✓ Less atelectasis
- ✓ Less VAP
- ✓Lower intrathoracic pressures
- ✓ Better venous return
- Less sedation, less delirium
- ✓Active physio
- ✓ Interaction with staff and relatives

CONs

- unassisted spontaneous hyperventilation has to be avoided
- ✓ higher work of breathing
- ✓ increased oxygen consumption
- ✓ Hypoventilation might happen
- the risk of cannulae and devices displacement is higher in awake patients

Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: Yes

Laurent Brochard^{1,2*}

In patients under partial ventilatory assist, <u>clinicians should not consider that their</u> <u>patients are "protected"</u> because they set only modest levels of positive airway pressure during inspiration using pressure support ventilation. To better understand what forces the patient is generating, <u>a monitoring of</u> <u>respiratory muscle activity and/or</u> <u>respiratory drive is necessary.</u>

Position paper for the organization of ECMO programs for cardiac failure in adults

✓ In order to optimize outcomes, we recommend that, whenever possible, centers performing ECMO for cardiac failure achieve a minimum ECMO case volume of 30 cases per year, with a substantial proportion being for cardiac failure

OI #1: We are below standards

Center volumes for 2019 All Patients

OI #2: We don't have enough evidence

Position paper for the organization of ECMO programs for cardiac failure in adults

Table 3 Indications for venoarterial ECMO and quality of evidence

	Highest level of evidence
Indications	
Myocardial infarction-associated cardiogenic shock	Cohort studies
Fulminant myocarditis	Cohort studies
Sepsis-associated cardiomyopathy	Cohort studies
Adult congenital heart disease with acute decompensated heart failure	Case series
Post-cardiotomy cardiogenic shock	Cohort studies
RV support during LVAD implantation	Cohort studies
Bridge to VAD or heart transplantation	Cohort studies
Post-transplantation graft failure	Cohort studies
ECPR	Cohort studies with matched propensity analyses
Cardiogenic shock post-cardiac arrest	Cohort studies with matched propensity analyses
Refractory ventricular arrhythmia	Cohort studies
Pulmonary hypertension with RV failure	Case series
Massive pulmonary embolism	Cohort studies

OI #2: We don't have enough evidence

Use of ECMO in ARDS: does the EOLIA trial really help?

Luciano Gattinoni^{*}, Francesco Vasques and Michael Quintel

EOLIA Authors' conclusion: "Among patients with very severe ARDS, 60day mortality was not significantly lower with ECMO than with a strategy of conventional mechanical ventilation that included ECMO as rescue therapy".

However:

- a) Emergency ECMO improves outcome by "buying time" in extremely hypoxemic patients. Of the 35 patients switched from conventional therapy to rescue ECMO (median SaO2 77%; nine cardiac arrest events), 15 survived. It is unlikely that they would have survived without ECMO, regardless of the statistical relevance of these observations.
- b) ECMO improves outcome by reducing the invasiveness of mechanical ventilation.

During ECMO, tidal volume was reduced by 43% and respiratory rate by 23%, while PEEP remained essentially unchanged. This represents an estimated 66% reduction in the mechanical power applied to the lungs (from 28 J/min to 10 J/min). This reduction was associated with a higher survival rate (81/124patients) in the ECMO group (vs 68/125 controls).

OI #2: We don't have enough evidence

Do we need randomized clinical trials in extracorporeal respiratory support? Yes

Alain Combes^{1,2*}, Antonio Pesenti³ and Daniel Brodie⁴

Do we need randomized clinical trials in extracorporeal respiratory support? No

Luciano Gattinoni^{*} and Michael Quintel

Do we need randomized clinical trials in extracorporeal respiratory support? We are not sure

Jean-Louis Vincent^{1*} and Laurent J. Brochard^{2,3}

OI #3: We have too many complications

Reporting and Definitions of ECMO Complications.			Renal failure	24/46 (52%)	AKI requiring renal replacement therapy #	10/46 (22%)	
Complication	Reported	Common definitions used	Total studies n, (%)	-	(22.5)	RIFLE classification KDIGO ⁶ , AKIN or ICD9 codes each	3/46 (7%) 3/46 (7%)
Bleeding 28/46 (61%)	28/46 (61%)	Bleeding requiring RBC's/transfusion (median ≥ 2 units, range 1-5U)	7/46 (15%)	- Infection/sepsis	19/46 (41%)	Any renal failure definition Sepsis (not defined) CDC ⁶ or INTERMACS ⁷ definitions each	21/46 (46%) 4/46 (9%) 4/46 (9%)
		≥1Unit ≥2Units	4/46 (9%) 1/46 (2%)			Positive sputum or blood cultures	2/46 (4%)
		≥3Units ≥4Units >5∐nits	1/46 (2%) 1/46 (2%) 1/46 (2%)	Cannula infection	9/46	Any Infection/sepsis definition Local cannula site infection	17/46 (37%) 4/46 (9%)
		Bleeding requiring surgical intervention	4/46 (9%)		(20%)	Positive cultures CLABSI or CRI criteria	2/46 (4%) 2/46 (4%)
		Bleeding from cannulation or surgery	3/46 (7%)	Equipment failure	9/46	definition	5/46 (17%)
		ELSO ¹ or ECABG ² or INTERMACS ³ definitions	3/46 (7%)	Equipment failure	(20%)	Oxygenator change Circuit thrombosis	4/46 (9%) 2/46 (4%)
Vascular	26/46	Any bleeding definition Ischaemia or	24/46 (52%) 21/46 (46%)		1	Equipment failure defined	9/46 (20%)
complications (57	(57%)	thromboembolism Vascular injury requiring surgical repair	17/46 (37%)	nization; CNS – centra vascular accident; RIFI	al membrai al nervous s LE – Risk, In	system; ICH – Intracranial haemorrh jury, Failure, Loss, and End-stage Kid	eal life support orga- lage; CVA – Cerebro- ney definition; RRT –
		Compartment syndrome Fasciotomy Amputation Any vascular complications		Renal replacement therapy; RBCs – Red blood cells; CT – Computerised Tomograph MRI – Magnetic resonance imaging; INTERMACS – Interagency Registry for Mechanica Assisted Circulatory Support; CDC – Centers for Disease Control; CLABSI – Central Line A sociated Blood Stream Infection ICD-9 – International classification of diseases. ECABC			
CNS injury 2 (25/46 (54%)	25/46 CVA or ICH (not further (54%) defined)		category; KDIGO – Kid	lney diseas	e: improving global outcomes defin	ition;
		Blood or ischaemia on CT/MRI INTERMACS or ICD-9 or CPC	5/46 (11%) 3/46 (7%)				J Crit Care 20

scale definitions

J Crit Care 2019

OI #3: We have too many complications

Simulation training for crises during venoarterial extracorporeal membrane oxygenation

Simon W. C. Sin^{1,2}, Pauline Y. Ng^{1,2}, Wallace C. W. Ngai¹, Peter C. K. Lai¹, Andy Y. T. Mok¹, Ricky W. K. Chan¹

OI #4: We should improve outcome

Ongoing researchReduction of complications

✓ Center performance

OI #4: We should improve outcome

NETWORKING

✓ Regional referral centers capable of performing ECMO, including ECMO transport, but without access to long-term heart replacement therapies, should have collaborative relationships with comprehensive care centers

OI #4: We should improve outcome

MONITORING

 No defined indications exist on monitoring ECMO patients

 No sistematic audit is performed in most centers

Echocardiography is an excellent tool to assess hemodynamic function and help guide management during VV ECLS.

NO INDICATIONS

REGARDING

MONITORING

Take-home points

✓ ECMO SAVES LIVES

- ✓ Many open issues remain, RCTs may not be the (only) way to answer, collaboration is essential
- ✓ As for all aspects in the care of the critically ill, sanga's mantra is... MEASURE, MEASURE, MEASURE!

Grazie

docsanga@gmail.com fabio.sangalli@unimib.it